Что такое лампа накаливания и в чём её отличие от энергосберегающей лампы? Лампочка накаливания


виды, характеристики (преимущества и недостатки)

Лампа накаливания – это источник искусственного света, который в процессе работы выделяет много тепла. Внутри ее металлическая спираль, чаще всего из тугоплавкого вольфрама. Этот элемент помещен в колбу, которая заполнена инертным газом, реже – вакуумная. Подобное наполнение не дает окисляться металлу. Такие лампы популярны благодаря низкой цене.

Путь создания

История этих ламп длинная и тернистая, не один создатель принял участие в ее творении. Разделить процесс создания можно на такие этапы:

  1. Изобретение Лодыгина. Русский ученый придумал, как засветить угольный стержень в стеклянном сосуде без доступа воздуха. Проблема была в том, что нить стала быстро перегорать. Чуть позже именно он предложил заменить угольный стержень вольфрамовым.
  2. Вклад Томаса Эдисона. Ему удалось создать недорогую и относительно долговечную модель подобной лампы. Он наладил потоковое производство, изготовить лампу можно было в нужных объемах. Почти всю жизнь он совершенствовал лампу, применяя разные материалы для достижения лучшего эффекта.

Со временем лампы начали наполнять инертными газами, что в разы увеличивало срок эксплуатации.

Лампа накалаЛампа накалаС момента появления она не очень сильно измениласьк содержанию ↑

Сфера использования

Не так давно лампы накаливания присутствовали в различных сферах жизни, в быту и на предприятиях. Это обуславливается простой их монтажа, эксплуатации и обслуживания. Используются в таких сферах:

  • Общего предназначения для внутреннего и наружного освещения в частных домах, квартирах, офисах.
  • Местного применения – для подсветки рабочих мест.
  • Также есть специальные автомобильные лампы накаливания.
  • Устанавливаются в поездах, на судах, и в самолетах.
  • Миниатюрные ЛН применяются в фонариках, шкалах приборов.
  • Сверхминиатюрные в отдельных медприборах, пультах управления.
  • Также есть коммутационные, маячные, кинопроекционные.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Во многих сферах сегодня используются экономичные лампы, но все же потребительский интерес применения ЛН не снижается.

к содержанию ↑

Характеристики

Лампы накала обладают такими характеристиками:

  1. Разлет мощностей. Зависит от сферы использования, так для бытовых целей применяются лампы от 25 до 150 Ватт, для других – до 1000 Вт.
  2. Нить накаливается до 2000–2800 градусов.
  3. Напряжение – 220–330 В.
  4. Световая отдача – 9–19 Лм/1Вт.
  5. Размеры цоколя – Е 14, Е 27 и Е 40, что соответствует 14, 27 и 40 мм. Тип цоколя – резьбовой и штифтовой. Последний может быть одно- или двухконтактным.
  6. Ресурс функционирования – 1000 часов при оптимальных условиях.
  7. Выделяют в процессе горения много тепла, имеют чувствительность к частым выключениям.
  8. По цене они самые доступные из предложенных в магазинах ламп.
  9. Средний вес – 15 г.
ХарактеристикиХарактеристикиХарактеристики ламп разной мощности

Принцип действия

Суть работы всех ЛН в использовании принципа нагревания вещества при прохождении сквозь него тока. В этом случае повышается температура нити накала после замыкания электрической цепи. Как результат запускается эффект электромагнитного теплового излучения. Чтобы оно стало видимым для человека, температура нагревания должна превышать 570 ⁰C – это начало красного свечения.

Внутри лампы нить накаливания разогревается до 2000–2800 ⁰С. При разогревании до такой температуры на воздухе вольфрам превращается в оксид – на нем образуется белый налет, поэтому внутрь колбы закачиваются нейтральные газы. На заре развития данной технологи освещения в лампочке создавался вакуум, сейчас это практикуют только для изделий минимальной мощности. При закручивании в патрон цоколя лампы и замыкании цепи запускается процесс накаливания нити, и она дает свет.

Конструкция

КонструкцияКонструкцияКонструкция ламп накаливания

Устройство всех ЛН схоже, в них содержаться:

  1. Рабочая часть – нить из вольфрамовой проволоки, свернутая в спираль. Удельное сопротивление этого металла в 3 раза больше, чем у меди. Вольфрам используется, потому что он тугоплавкий и можно максимально уменьшить сечение нити. За счет этого повышается электрическое сопротивление. Питание спираль получает от электродов.
  2. Спираль удерживают элементы из молибдена. Он также тугоплавкий, имеет низкий коэффициент теплового расширения.
  3. Колба из стекла. Внутри ее инертный газ, что не дает сгореть нити накала. Именно поэтому такие лампы не вакуумные, именно газ создает давление внутри колбы.
  4. Электроды соединяются с контактными элементами цоколя с помощью медных проводников.
  5. Цоколь. Такой элемент есть во всех рассматриваемых лампочках, за исключением специальных автомобильных. Резьба на цоколе и его размер могут быть различными.

Цоколь

Самые привычные для нас лампочки с резьбовым цоколем, размеры их стандартизированы. Для моделей, что используются в бытовых условиях, востребованы Е 14, Е 27 и Е 40. Реже используются для таких источников света без резьбы, но они распространены в автомобильном деле.

Интересно! В Америке и Канаде используются другие стандарты цоколей по причине иного напряжения в сети. Для них привычные размеры резьбы в мм: 12, 17, 26 и 39. При отражении размера цоколя на лампочке перед цифрами стоит так же как и у нас литера Е.

ЦоколиЦоколиЦоколи ламп накаливания

Маркировка

Разобраться в маркировке ламп накаливания несложно, основные обозначения, которые можно встретить:

  • Специфика конструкции и свойства. «Б» указывает на аргоновую биспиральную ЛН, «В» – на содержание внутри вакуума, «Г» – на то, что в лампу закачан газ, «БК» – биспиральная криптоновая, «МЛ» – молочный цвет колбы, «МТ» – матовая, «О» – опаловая.
  • О назначении лампочки расскажет вторая часть маркировки. «Ж» – железнодорожная, «КМ» – коммутационная, «СМ» – для самолетов, «А» – для автомобилей, «ПЖ» – лампа высокой мощности для использования в прожекторах.
  • Форму обозначают так: «А» – абажур, «Д» – декоративная, «В» – витая.
  • Первые цифры – это номинальное напряжение.

Коэффициент полезного действия и долговечность

Существенные недостатки таких ламп – это небольшой срок эксплуатации и низкий коэффициент полезного действия. Под КПД подразумевается соотношение мощности и заметного человеку излучения. Как помним, нить разогревается до 2700 К, в этом случае ее КПД около 5%. Вся остальная энергия, которая, кстати, в полном объеме превращается в излучение, припадает на инфракрасный спектр, который невидим для человека. Мы воспринимаем его как тепло.

Теоретические повысить КПД до 20% можно, для этого следует увеличить температуру нити накала до 3400 К, получаемый свет в этом случае будет в 2 раза ярче, правда, срок эксплуатации уменьшается на 95%.

Если мощность снижать, то период эксплуатации ламп накаливания может увеличиваться в 5 и более раз. Уменьшение напряжения при этом снижает КПД, но использовать лампочку получиться в 1000 раз дольше. Этот эффект используется при создании надежного дежурного освещения. Конечно, это возможно, только если нет критических требований к освещенности.

ПерегораниеПерегораниеПроцесс перегорания лампы накаливанияк содержанию ↑

Виды ламп и их функциональное назначение

Существует много ламп накаливания, классификация их происходит по функциональному назначению и конструкционным особенностям.

Общего, местного предназначения

Вплоть до 1970 года их называли нормально-осветительными. Эта группа является самой массовой среди обычных ЛН. Ранее успешно использовались как для общего, так и для декоративного освещения дома, в офисах, других учреждениях. На данный момент во многих странах, в том числе в России, их выпуск ограничивается.

Что касается лампочек местного назначения, то они по конструкции такие же, как и общего, но рассчитаны они на пониженное рабочее напряжение. Использоваться могут в ручных переносных светильниках, для освещения станков, верстаков и т. д.

ЛампаЛампаЛампа общего назначения

Декоративные

Основная их особенность – это фигурная колба, размеры ее могут быть очень разными, также как и расположение внутри нити накаливания. Подобные модели сегодня очень востребованы, но выполняют не так роль освещения, как декора, в особенности в винтажных или ретро дизайн-проектах. Внешний вид подобной лампы очень оригинален.

Декоративные лампыДекоративные лампыВарианты исполнения декоративных ламп

Иллюминационные

Колба у них окрашена в разные цвета, в зависимости от целевого использования. Удобны для оснащения иллюминационных установок. Краска в основном наносится на колбу внутри, для этого применяются неорганические пигменты. Значительно реже такие лампы красят снаружи. Мощность их небольшая, варьируется в пределах 10–25 Вт. Необходимый эффект они дают только первое время, далее цвет их меняется, теряет яркость.

Лампа накалаЛампа накалаИллюминационная лампа может быть разной мощности

Сигнальные

Применялись в разных светосигнальных приборах. На данный момент из этой сферы их вытесняют светодиодные лампы.

Сигнальная лампаСигнальная лампаВариант исполнения сигнальной лампы

Зеркальные

Колба такой лампы имеет специфическую форму, внутри она покрыта тонким слоем алюминия. За счет этого создается зеркальный эффект, также есть прозрачная часть. Основная задача таких ламп – распределение светового потока с целью сосредоточения в пределах определенной зоны. Удобно их использовать в витринах магазинов, в торговых залах. Именно такие лампы используются для обогрева новорожденных птенцов и других животных.

Лампа накаливанияЛампа накаливанияЗеркальная лампа накаливания

Транспортные

Эта группа очень обширная, используется в разных транспортных средствах, для фар или другой подсветки. Востребованы для:

  • Автомобилей.
  • Мотоциклов.
  • Тракторов.
  • Самолетов и вертолетов.
  • Речных и морских судов.

Такие лампы имеют ряд особенностей, среди них:

  1. Высокая прочность.
  2. Стойкость к воздействию вибрации.
  3. Специальные цоколи, за счет чего удается быстро менять вышедшую из строя лампу.
  4. Они рассчитаны на питание от электрической сети ТС.
АвтолампыАвтолампыАвтомобильные лампы накаливания

Двухнитевые

Это подтип специальной лампы накаливания, которые используются в:

  • Автомобилях. Так, лампы для фар могут иметь 2 нити накала. Одна из них идет на ближний свет, вторая – на дальний. Аналогичная ситуация и для задних фонарей, только тут отдельные нити для габаритов и для стоп-сигналов.
  • Самолетах. В отдельных моделях в посадочно-рулежной фаре.
  • Ж/д светофорах. Тут двухнитевые лампы – это элемент безопасности и подстраховки, если перегорит одна, то вторая сможет продолжать подавать сигнал.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Есть и другие варианты ламп, например, имеющие специальный спектр излучения, нагревательные, проекционные и другие. Но сегодня они активно вытесняются другими типами лампочек.

Двухнитевая ЛНДвухнитевая ЛНДвухнитевая автомобильная лампа накаливанияк содержанию ↑

Преимущества и недостатки

Самые популярные в мире лампы имеют как преимущества, так и много недостатков, особенно с развитием новых технологий освещения. Начать стоит с достоинств, конкретней:

  • Доступная цена. Это самый бюджетный вариант на данный момент. Правда, это касается только стоимости, но не счетов за электроэнергию.
  • Компактные размеры.
  • Практически не страдают от перепадов напряжения в сети.
  • Не требуется время для разогрева.
  • При функционировании на переменном токе мерцания невидимо.
  • Можно использовать электронные диммеры для контроля и экономии потребления электроэнергии.
  • Спектр отлично воспринимается человеческим глазом, тип его непрерывный.
  • Индекс цветопередачи на высоком уровне.
  • Можно использовать в любом температурном режиме, независимо от разновидности.
  • Большой разлет вольтажа, от долей до сотен Вольта.
  • Не требуют специальной утилизации, так как не содержат внутри токсических компонентов. То есть не несут вред людям и другим живым существам.
  • Не нужна дополнительная пускорегулирующая аппаратура, что в сравнении с современными источниками света большой плюс.
  • Во время работы не гудят и не создают радиопомех.
  • Нечувствительность к полярности – она все равно будет работать.
  • Создают минимальный уровень излучения УФ лучей, если сравнивать с другими современными лампочками.
ОсобенностиОсобенностиОсновные плюсы и минусы

Недостатки:

  1. Низкая световая отдача и непродолжительный период эксплуатации – это самые большие минуса лампочек накала.
  2. Зависимость качества световой отдачи от напряжения.
  3. Выработка огромного количества тепла.
  4. Потребляют много электроэнергии.
  5. Пожароопасность. В зависимости от мощности лампочки, поверхность вокруг нее нагревается вплоть до +330 ⁰C.
  6. Есть риск взрыва лампы, что приведет к травмированию.
  7. Хрупкость.

к содержанию ↑

Вывод

Современные источники света активно вытесняют лампы накаливания их схем использования в быту и в других сферах. Их производство сокращается, но все равно традиционные лампы остаются популярными среди многих потребителей.

Цены на популярные модели

lampaexpert.ru

технические характеристики, виды и принцип их работы

Среди искусственных источников освещения самыми массовыми являются лампы накаливания. Везде, где есть электрический ток, можно обнаружить трансформацию его энергии в световую, и почти всегда для этого используются лампы накаливания. Разберемся, как и что в них накаливается, и какими они бывают.

Принцип действия и особенности конструкции

  1. Тело накала
  2. характеристики лампы накаливанияОбщий принцип действия лампы накаливания состоит в сильном нагревании тела накала потоком заряженных частиц. Для излучения видимого человеческим глазом спектра температура светящегося объекта должна достигать 570 ⁰С, т.н. красное излучение, а для комфортного освещения окружающего пространства превышать это значение в 4-5 раз.

    Наибольшая температура плавления среди металлов принадлежит вольфраму (3410 ⁰С), именно поэтому в качестве тела накала используют вольфрамовую проволоку, свернутую в спираль для уменьшения занимаемого объема при сохранении площади поверхности излучения.

    Температура спирали в лампе накаливания во включенном режиме 2000-2800 ⁰С, что соответствует цветовой температуре в 2200-3000К или теплому желтоватому спектру. Хотя он и более тусклый, чем дневной, цветовая температура которого около 5700К, но в темное время суток, а это основной период эксплуатации ламп накаливания, желтый свет предпочтительнее для человека.

    Причина в том, что его спектр не влияет на естественный синтез мелатонина – важнейшего гормона, вырабатываемого шишковидной железой и ответственного за биоритмы и согласованную работу всех остальных желез организма.

  3. Колба, держатель и токовые вводы
  4. Для предотвращения окисления вольфрама, тело накала размещают в герметичном стеклянном сосуде, заполненном инертным газом. Как правило, это аргон, иногда азот или криптон. При постоянном нагреве вольфрам со временем испаряется, а инертные газы создают давление, препятствующее этому, и увеличивают срок службы лампы.

    как выбрать светодиодные лампы для домаЧтобы узнать, как выбрать светодиодные лампы для дома, желательно изучить и проанализировать характеристики различных источников LED освещения.

    Другим вариантом воплощения различных дизайнерских решений является использование светодиодных лент. Как установить такой вид освещения своими руками, подскажет интересная статья.

    В стеклянной колбе установлен держатель тела накала, к которому через герметичный цоколь подведены электроды. Крючки держателя, непосредственно контактирующие с вольфрамовой спиралью, изготавливают из молибдена.

  5. Цоколь лампы накаливания
  6. Цоколь также является конструктивным элементом, присущим всем лампам накаливания, за исключением специализированных автомобильных ламп. В России, также как и в Европе, бытовые лампы имеют резьбовой цоколь Эдисона трех стандартных размеров: Е14, Е27 и Е40. В Британии используют цоколи без резьбы на защелкивающемся байонете, а в США и Канаде иной диаметр резьбового соединения: Е12, Е17, Е26, Е39.

Особенности конкретной лампы можно узнать, изучив индекс, выбитый на ее металлическом цоколе.

В индексе используются следующие цифро-буквенные обозначения:
  • Б — Биспиральная, аргоновое наполнение
  • БК — Биспиральная, криптоновое наполнение
  • В — Вакуумная
  • Г — Газополная, аргоновое наполнение
  • ДС, ДШ – Декоративные лампы
  • РН – различные назначения
  • А — Абажур
  • В — Витая форма
  • Д — Декоративная форма
  • Е — С винтовым цоколем
  • Е27 — Вариант исполнения цоколя
  • З — Зеркальная
  • ЗК — Концентрированное светораспределение зеркальной лампы
  • ЗШ — Широкое светораспределение
  • 215-230В — Шкала рекомендуемых напряжений
  • 75 Вт — Потребляемая мощность электроэнергии

Виды ламп накаливания и их функциональное назначение

  1. Лампы накаливания общего назначения
  2. По своему функциональному назначению наиболее распространенными являются лампы накаливания общего назначения (ЛОН). Все ЛОН, производимые в России должны соответствовать требованиям ГОСТ 2239-79. Их применяют для наружного и внутреннего, а также для декоративного освещения, в бытовых и промышленных сетях с напряжением 127 и 220 В и частотой 50 Гц.лампы накаливания общего назначенияЛОН имеют относительно недолгий срок, в среднем около 1000 часов, и невысокий КПД – они преобразуют в свет только 5% электроэнергии, а остальное выделяется в виде тепла.

    Особенностью маломощных (до 25 Вт) ЛОН является используемая в них, в качестве тела накала, угольная нить. Эта устаревшая технология использовалась еще в первых «лампочках Ильича» и сохранилась только здесь.

    Сейсмостойкие лампы, тоже входящие в группу ЛОН, конструктивно способны выдерживать сейсмический удар длительностью до 50 мс.

  3. Лампы накаливания прожекторные
  4. Прожекторные лампы накаливания отличаются значительно большей, по сравнению с остальными видами, мощностью и предназначены для направленного освещения или подачи световых сигналов на дальние расстояния. Согласно ГОСТу их разделяют на три группы: лампы кинопроекционные (ГОСТ 4019-74), для прожекторов общего назначения (ГОСТ 7874-76) и маячные лампы (ГОСТ 16301-80).

    как подключить розетку с заземлениемИспользование трехжильной проводки в домашней сети обеспечивает высокий уровень пожаробезопасности и уменьшает риски для жизни человека. В решении вопроса — как подключить розетку с заземлением — достаточно следовать элементарным правилам и схеме установки.

    Для оборудования электрических сетей жилых помещений средствами безопасности необходимо сделать выбор между установкой УЗО или дифавтомата. Помочь в этом сможет полезная статья. Установить дифавтомат можно несколькими методами, о которых можно прочитать здесь.

    Тело накала в прожекторных лампах длиннее и при этом расположено более компактно, для усиления габаритной яркости и последующей фокусировки светового потока. Задачу фокусировки решают специальные фокусирующие цоколи, предусмотренные в некоторых моделях, либо оптические линзы в конструкциях прожекторов и маяков.

    Максимальная мощность выпускаемых сегодня в России прожекторных ламп составляет 10 кВт.

  5. Лампы накаливания зеркальные
  6. зеркальная лампа накаливанияЗеркальные лампы накаливания отличают особая конструкция колбы и светоотражающий алюминиевый слой. Светопроводящая часть колбы выполнена из матового стекла, что придает свету мягкость и сглаживает контрастные тени от предметов. Такие лампы маркируются индексами обозначающими тип светового потока: ЗК (концентрированное светораспределение), ЗС (среднее светораспределение) или ЗШ (широкое светораспределение).

    К этой же группе относят неодимовые лампы, отличие которых состоит в добавлении окиси неодима в формулу состава, из которого выдувается стеклянная колба. Благодаря этому часть желтого спектра поглощается, и цветовая температура сдвигается в область более яркого белого излучения. Это позволяет использовать неодимовые лампы в интерьерном освещении для большей яркости и сохранения оттенков в интерьере. В индекс неодимовых ламп добавлена буква «Н».

    Сфера применения зеркальных ламп огромна: витрины магазинов, сценическое освещение, оранжереи, теплицы, животноводческие хозяйства, освещение медицинских кабинетов и многое другое.

  7. Лампы накаливания галогенные
  8. Характеристики галогенных ламп накаливания предусматривают обязательное наличие в газовой колбе бром- или иод-галогеновых соединений. Этот нюанс среды, в которой находится тело накала, позволяет испарившимся молекулам вольфрама реагировать с буферным газом и осаждаться обратно на поверхность спирали после температурного распада неустойчивого соединения.

    За счет этого амортизирующего цикла галогенные лампы могут выдерживать больший нагрев спирали, а значит излучать более белый свет, уже около 3000 К, а также имеют увеличенный срок эксплуатации, среднее значение которого 2000 часов.

Но надо знать и о минусах галогенных ламп. Это низкое электрическое сопротивление лампы в остывшем состоянии и невозможность ее применения в системах «Умный дом», где яркость освещения регулируется диммером.

Перед тем, как определить, какая именно лампа накаливания вам нужна, стоит изучить особенности и маркировку существующих типов. При всем их разнообразии, нужно точно понимать назначение выбираемой лампы и то, как и где она будет использоваться. Несоответствие характеристик лампы задачам, под которые она приобретается, может повлечь не только ненужные расходы, но и привести к аварийным ситуациям, вплоть до повреждения электросети и пожара.

Занимательное видео, характеризирующее работу трех видов лампочек

elektrik24.net

устройство, принцип работы, виды и технические характеристики

Лампа накаливания – первый электрический осветительный прибор, играющий важную роль в жизнедеятельности человека. Именно она позволяет людям заниматься своими делами независимо от времени суток.

По сравнению с остальными источниками света такое устройство характеризуется простотой конструкции. Световой поток излучается вольфрамовой нитью, расположенной внутри стеклянной колбы, полость которой заполнена глубоким вакуумом. В дальнейшем для увеличения долговечности вместо вакуума в колбу стали закачивать специальные газы — так появились галогеновые лампы. Вольфрам — термостойкий материал с большой температурой плавления. Это очень важно, поскольку для того, чтобы человек увидел свечение, нить должна сильно нагреться за счет проходящего через нее тока.

Лампа накаливания отличается простотой конструкции

История создания

Интересно, что в первых лампах использовался не вольфрам, а ряд других материалов, включая бумагу, графит и бамбук. Поэтому, несмотря на то, что все лавры за изобретение и усовершенствование лампы накаливания принадлежат Эдисону и Лодыгину, приписывать все заслуги только им — неправильно.

Писать о неудачах отдельных ученых не станем, но приведем основные направления, к которым прилагали усилия мужи того времени:

  1. Поиски лучшего материала для нити накаливания. Нужно было найти такой материал, который одновременно был устойчив к возгоранию и характеризовался высоким сопротивлением. Первая нить была создана из волокон бамбука, которые покрывались тончайшим слоем графита. Бамбук выступал в качестве изолятора, графит — токопроводящей среды. Поскольку слой был малым, то существенно возрастало сопротивление (что и требовалось). Все бы хорошо, но древесная основа угля приводила к быстрому воспламенению.
  2. Далее исследователи задумались над тем, как создать условия строжайшего вакуума, ведь кислород — важный элемент для процесса горения.
  3. После этого нужно было создать разъемные и контактные компоненты электрической цепи. Задача усложнялась из-за использования слоя графита, характеризующегося высоким сопротивлением, поэтому ученым пришлось использовать драгоценные металлы — платину и серебро. Так повышалась проводимость тока, но стоимость изделия была чересчур высока.
  4. Примечательно, что резьба цоколя Эдисона используется и по сей день — маркировка E27. Первые способы создания контакта включали пайку, но при таком раскладе сегодня говорить о быстро заменяемых лампочках было бы сложно. А при сильном нагреве подобные соединения быстро бы распадались.

Изобретатели электрической лампочки

В наше время популярность подобных ламп падает в геометрической прогрессии. В 2003 году в России была увеличена амплитуда питающего напряжения на 5 %, к сегодняшнему дню этот параметр составляет уже 10 %. Это привело к сокращению срока эксплуатации лампы накаливания в 4 раза. С другой стороны, если вернуть напряжение на эквивалентное значение вниз, то существенно сократится отдача светового потока — до 40 %.

Вспомните учебный курс — еще в школе преподаватель физики ставил опыты, демонстрируя, как увеличивается свечение лампы при повышении силы тока, подающегося на вольфрамовую нить. Чем выше сила тока, тем сильнее выброс излучения и больше тепла.

Принцип действия

Принцип работы лампы построен на сильном нагреве нити накаливания за счет проходящего через нее электрического тока. Для того чтобы твердотельный материал начал излучать красное свечение, его температура должна достигнуть 570 град. Цельсия. Излучение будет приятным для глаз человека только при увеличении этого параметра в 3–4 раза.

Подобной тугоплавкостью характеризуются немногие материалы. За счет доступной ценовой политики выбор был сделан в пользу вольфрама, температура плавления которого составляет 3400 град. Цельсия. Чтобы повысить площадь светового излучения, вольфрамовая нить скручивается в спираль. В процессе эксплуатации она может нагреваться до 2800 град. Цельсия. Цветовая температура такого излучения равна 2000–3000 К, что дает желтоватый спектр — несопоставимый с дневным, но в то же время не оказывающий негативного воздействия на зрительные органы.

Разогретая до высокой температуры вольфрамовая нить

Попадая в воздушную среду, вольфрам быстро окисляется и разрушается. Как уже говорилось выше, вместо вакуума стеклянная колба может заполняться газами. Речь идет об инертных азоте, аргоне или криптоне. Это позволило не только повысить долговечность, но и увеличить силу свечения. На срок эксплуатации влияет то, что давление газа препятствует испарению вольфрамовой нити из-за высокой температуры свечения.

Строение

Обычная лампа состоит из следующих конструктивных элементов:

  • колба;
  • вакуум или инертный газ, закачиваемый внутрь нее;
  • нить накала;
  • электроды — выводы тока;
  • крючки, необходимые для удерживания нити накала;
  • ножка;
  • предохранитель;
  • цоколь, состоящий из корпуса, изолятора и контакта на донышке.

Помимо стандартных исполнений из проводника, стеклянного сосуда и выводов, существуют лампы специального назначения. В них вместо цоколя используются другие держатели или добавляется дополнительная колба.

Конструкция лампочки накаливания

Предохранитель обычно изготавливается из сплава феррита и никеля и помещается в разрыв на одном из выводов тока. Зачастую он расположен в ножке. Его основное предназначение — защита колбы от разрушения в случае обрыва нити. Связано это с тем, что в случае ее обрыва образуется электрическая дуга, приводящая к плавлению остатков проводника, которые попадают на стеклянную колбу. Из-за высокой температура она может взорваться и вызвать возгорание. Впрочем, долгие годы доказали низкую эффективность предохранителей, поэтому они стали эксплуатироваться реже.

Колба

Стеклянный сосуд используется для защиты нити накаливания от окисления и разрушения. Габаритные размеры колбы подбирают в зависимости от скорости осаждения материала, из которого производится проводник.

Газовая среда

Если раньше вакуумом заполнялись все без исключения лампы накаливания, то сегодня такой подход применяют лишь для маломощных источников света. Более мощные устройства заполняются инертным газом. Молярная масса газа влияет на излучение тепла нитью накаливания.

В колбу галогенных ламп закачиваются галогены. Вещество, которым покрыта нить накала, начинает испаряться и взаимодействовать с расположенными внутри сосуда галогенами. В результате реакции образуются соединения, которые повторно разлагаются и вещество вновь возвращается на поверхность нити. Благодаря этому появилась возможность повысить температуру проводника, увеличив коэффициент полезного действия и срок эксплуатации изделия. Также такой подход позволил сделать колбы более компактными. Недостаток конструкции связан с изначально малым сопротивлением проводника при подаче электрического тока.

Схема работы галогеновых ламп накаливания

Нить накала

По форме нить накаливания может быть разной — выбор в пользу той или иной связан со спецификой лампочки. Зачастую в них применяют нить с круглым сечением, закрученную в спираль, гораздо реже — ленточные проводники.

Современная лампа накаливания работает от нити из вольфрама или осмиево-вольфрамового сплава. Вместо обычных спиралей могут закручиваться биспирали и триспирали, что стало возможным за счет повторного закручивания. Последнее приводит к уменьшению теплового излучения и повышению КПД.

Технические характеристики

Интересно наблюдать за зависимостью световой энергии и мощности лампы. Изменения не линейны — до 75 Вт световая отдача увеличивается, при превышении — снижается.

Одно из преимуществ таких источников света – равномерное освещение, поскольку практически во всех направлениях свет излучается с одинаковой силой.

Наибольшая световая отдача у ламп накаливания мощностью 75 Вт

Еще одно достоинство связано с пульсированием света, которое при определенных значениях приводит к значительной утомляемости глаз. Нормальным значением считают коэффициент пульсации, не превышающий 10 %. Для ламп накаливания параметр максимум достигает 4 %. Самый худший показатель — у изделий мощностью 40 Вт.

Среди всех доступных электрических осветительных приборов лампы накаливания нагреваются сильнее. Большая часть тока преобразуется в тепловую энергию, поэтому прибор больше похож на обогреватель, чем на источник света. Световая отдача находится в диапазоне от 5 до 15 %. По этой причине в законодательстве прописаны определенные нормы, запрещающие, к примеру, использовать лампы накаливания более 100 Вт.

Обычно для освещения одной комнаты достаточно лампы на 60 Вт, которая характеризуется небольшим нагревом.

При рассмотрении спектра излучения и сравнении его с естественным освещением можно сделать два важных замечания: световой поток таких ламп содержит меньше синего и больше красного света. Тем не менее, результат считается приемлемым и не приводит к утомлению, как в случае с источниками дневного света.

Световой поток ламп накаливания не утомляет глаза

Эксплуатационные параметры

При эксплуатации ламп накаливания важно учитывать условия их использования. Их можно применять в помещениях и на открытом воздухе при температуре не менее –60 и не более +50 град. Цельсия. При этом влажность воздуха не должна превышать 98 % (+20 град. Цельсия). Устройства могут работать в одной цепи с диммерами, предназначенными для регулирования световой отдачи за счет изменения интенсивности света. Это дешевые изделия, которые могут быть самостоятельно заменены даже неквалифицированным человеком.

Виды

Существует несколько критериев для классификации ламп накаливания, которые будут рассмотрены ниже.

В зависимости от эффективности освещения лампы накаливания бывают (от худших к лучшим):

  • вакуумные;
  • аргоновые или азот-аргоновые;
  • криптоновые;
  • ксеноновые или галогенные с установленным отражателем инфракрасного излучения внутрь лампы, что увеличивает КПД;
  • с покрытием, предназначенным для преобразования инфракрасного излучения в видимый спектр.

Криптоновая лампочка накаливания

Намного больше разновидностей ламп накаливания, связанных с функциональным назначением и конструктивными особенностями:

  1. Общее назначение — в 70-х гг. прошлого столетия они назывались «нормально-осветительными лампами». Самая распространенная и многочисленная категория — изделия, применяемые для общего и декоративного освещения. С 2008 года выпуск таких источников света существенно сократился, что было связано с принятием многочисленных законов.
  2. Декоративное назначение. Колбы таких изделий выполняются в форме изящных фигур. Чаще всего встречаются свечеобразные стеклянные сосуды с диаметром до 35 мм и сферические (45 мм).
  3. Местное назначение. По конструкции идентичны первой категории, но питаются от уменьшенного напряжения — 12/24/36/48 В. Обычно применяются в переносных светильниках и приборах, освещающих верстаки, станки и т. п.
  4. Иллюминационные с окрашенными колбами. Зачастую мощность изделий не превышает 25 Вт, а для окрашивания внутренняя полость покрывается слоем неорганического пигмента. Гораздо реже можно встретить источники света, наружная часть которых окрашивается цветным лаком. В таком случае пигмент очень быстро выцветает и осыпается.

Лампа накаливания зеркальная 300 вт

  1. Зеркальные. Колба выполнена в специальной форме, которая покрыта отражающим слоем (к примеру, методом распыления алюминия). Данные изделия используются для перераспределения светового потока и повышения эффективности освещения.
  2. Сигнальные. Их устанавливают в светосигнальные изделия, предназначенные для отображения какой-либо информации. Характеризуются низкой мощностью и рассчитаны на продолжительную эксплуатацию. На сегодняшний день практически бесполезны из-за доступности светодиодов.
  3. Транспортные. Еще одна обширная категория ламп, используемых в транспортных средствах. Характеризуются высокой прочностью, устойчивостью к вибрациям. В них применяют специальные цоколи, гарантирующие прочное крепление и возможность быстрой замены в стесненных условиях. Могут питаться от 6 В.
  4. Прожекторные. Высокомощные источники света до 10 кВт, характеризующиеся высокой световой отдачей. Спираль укладывается компактно, чтобы обеспечить лучшую фокусировку.
  5. Лампы, применяемые в оптических приборах, — к примеру, кинопроекционная или медицинская техника.

Специальные лампы

Также существуют более специфические разновидности ламп накаливания:

  1. Коммутаторные — подкатегория сигнальных ламп, применяемых в коммутаторных панелях и выполняющих функции индикаторов. Это узкие, продолговатые и малогабаритные изделия, имеющие параллельные контакты гладкого типа. За счет этого могут помещаться в кнопки. Маркируются как «КМ 6-50». Первое число указывает на вольтаж, второе — ампераж (мА).
  2. Перекальная, или фотолампа. Данные изделия используются в фототехнике для нормированного форсированного режима. Характеризуется высокими световой отдачей и цветовой температурой, но малым сроком эксплуатации. Мощность советских ламп достигала 500 Вт. В большинстве случаев колба матируется. Сегодня практически не используются.
  3. Проекционные. Применялись в диапроекторах. Высокая яркость.

Двухнитевая лампа бывает нескольких разновидностей:

  1. Для автомобилей. Одна нить используется для ближнего, другая — для дальнего света. Если рассматривать лампы для задних фонарей, то нити могут использоваться для стоп-сигнала и габаритного огня соответственно. Дополнительный экран может отсекать лучи, которые в лампе ближнего света могут слепить водителей встречных автомобилей.
  2. Для самолетов. В посадочной фаре одна нить может использоваться для малого света, другая — для большого, но требует внешнего охлаждения и непродолжительной эксплуатации.
  3. Для железнодорожных светофоров. Две нити необходимы для повышения надежности — если перегорит одна, то будет светиться другая.

Лампа накаливания двухнитевая 12V

Продолжим рассматривать специальные лампы накаливания:

  1. Лампа-фара — сложная конструкция для подвижных объектов. Используется в автомобильной и авиационной технике.
  2. Малоинерционная. Содержат тонкую нить накаливания. Применялась в звукозаписывающих системах оптического типа и в некоторых видах фототелеграфа. В наше время используется редко, поскольку есть более современные и улучшенные источники света.
  3. Нагревательная. Применяется в качестве источника тепла в лазерных принтерах и копирах. Лампа имеет цилиндрическую форму, закрепляется во вращающемся металлическом валу, к которому прикладывается бумага с тонером. Вал передает тепло, что приводит к расплыванию тонера.

КПД

Электрический ток в лампах накаливания преобразуется не только в видимый для глаза свет. Одна часть идет на излучение, другая трансформируется в тепло, третья — на инфракрасный свет, который не фиксируется зрительными органами. Если температура проводника составляет 3350 К, то КПД лампы накаливания составит 15 %. Обычная лампа на 60 Вт с температурой 2700 К характеризуется минимальным КПД — 5 %.

Коэффициент полезного действия усиливается степенью нагрева проводника. Но чем выше будет нагрев нити, тем меньше срок эксплуатации. К примеру, при температуре 2700 К лампочка просветит 1000 часов, 3400 К — в разы меньше. Если повысить напряжение питания на 20 %, то свечение усилится в два раза. Это нерационально, поскольку срок эксплуатации сократится на 95 %.

Характеристики различных типов ламп накаливания

Плюсы и минусы

С одной стороны, лампы накаливания являются самыми доступными источниками света, с другой – характеризуются массой недостатков.

Преимущества:

  • низкая стоимость;
  • нет необходимости в применении дополнительных приспособлений;
  • простота использования;
  • комфортная цветовая температура;
  • устойчивость к повышенной влажности.

Недостатки:

  • недолговечность — 700–1000 часов при соблюдении всех правил и рекомендаций по эксплуатации;
  • слабая световая отдача — КПД от 5 до 15 %;
  • хрупкая стеклянная колба;
  • возможность взрыва при перегреве;
  • высокая пожарная опасность;
  • перепады напряжения существенно сокращают срок эксплуатации.

Как увеличить срок службы

Существует несколько причин, по которым может уменьшиться срок эксплуатации данных изделий:

  • перепады напряжения;
  • механические вибрации;
  • высокая температура окружающей среды;
  • разрыв соединения в проводке.

Вот несколько рекомендаций по продлению срока службы ламп накаливания:

  1. Выберите изделия, которые подходят для диапазона напряжения сети.
  2. Перемещение осуществляйте строго в выключенном состоянии, поскольку из-за малейших вибраций изделие выйдет из строя.
  3. Если лампы продолжают перегорать в одном и том же патроне, то его нужно заменить или починить.
  4. При эксплуатации на лестничной площадке в электрическую цепь добавьте диод или включите параллельно две лампы одной мощности.
  5. На разрыв цепи питания можно добавить устройство для плавного включения.

Устройство плавного включения ламп накаливания

Технологии не стоят на месте, постоянно развиваются, поэтому сегодня на смену традиционным лампам накаливания пришли более экономичные и долговечные светодиодные, люминесцентные и энергосберегающие источники света. Главными причинами выпуска ламп накаливания остается наличие менее развитых с технологической точки зрения стран, а также хорошо налаженное производство.

Приобретать такие изделия сегодня можно в нескольких случаях — они хорошо вписываются в дизайн дома или квартиры, либо вам нравится мягкий и комфортный спектр их излучения. Технологически — это давно устаревшие изделия.

220.guru

Первая лампа накаливания: история изобретения

 

Лампочка накаливая – предмет, знакомый всем. Электричество и искусственный свет уже давно стали для нас неотъемлемой частью действительности. Но мало кто задумывается, как появилась та самая первая и привычная нам лампа накаливания.

Наша статья расскажет вам, что собой представляет лампа накаливания, как она работает и как появилась в России и во всем мире.

Что собой представляет

Лампа накаливания — электрический вариант источника света, основная часть которого представляет собой тугоплавкий проводник, играющий роль тела накала. Проводник размещен в колбе из стекла, которая внутри бывает накаченной инертным газом или полностью лишенной воздуха. Пропуская через тугоплавкий тип проводника электрический ток, данная лампа может испускать световой поток.

Свет от лампы накаливания в темноте

Свечение лампы накаливания

Принцип функционирования базируется на том, что когда электрический ток течет по телу накала, данный элемент начинает накаливаться, нагревая вольфрамовую нить. Вследствие этого нить накала начинает испускать излучение электромагнитно-теплового типа (закон Планка). Для создания свечения температура накала должна составлять пару тысяч градусов. При снижении температуры спектр свечения будет становиться все более красным.Все минусы, имеющиеся у лампы накаливания, кроются в температуре накала. Чем лучше нужен световой поток, тем большая температура потребуется. При этом вольфрамовая нить характеризуется пределом накала, при превышении которого этот источник света навсегда выходит из строя.Обратите внимание! Температурный предел нагрева для ламп накаливания — 3410 °C.

Конструкционные особенности

Поскольку лампа накаливания считается самым первым источников света, то вполне закономерно, что ее конструкция должна быть достаточной простой. Особенно, если сравнивать с нынешними источниками света, которые ее постепенно вытесняют с рынка.В лампе накаливания ведущими элементами считаются:

  • колба лампы;
  • тело накала;
  • токовводы.

Обратите внимание! Первая подобная лампа имела именно такое строение.

Лампа накаливания и ее элементы

Конструкция лампы накаливания

На сегодняшний день разработано несколько вариантов ламп накаливания, но такое строение характерно для самых простых и самых первых моделей.В стандартной лампочке накаливания, кроме вышеописанных элементов имеется предохранитель, который представляет собой звено. Оно состоит из ферроникелевого сплава. Его вваривают в разрыв одного из двух токовводов изделия. Звено размещается в ножке токоввода. Оно нужно для того, чтобы предупредить разрушение стеклянной колбы во время прорыва нити накала. Это связано с тем, что при прорыве вольфрамовой нити создается электрическая дуга. Она может оплавить остатки нити. А ее фрагменты могут повредить колбу из стекла и привести к возникновению возгорания.Предохранитель же разрушает электрическую дугу. Такое ферроникелевое звено размещается в полости, где давление равняется атмосферному. В данной ситуации дуга гаснет.Такое строение и принцип работы обеспечили лампе накаливания широкое распространение по миру, но из-за их высокого энергопотребления и непродолжительному сроку службы, она сегодня стали использоваться гораздо реже. Связано это с тем, что появились более современные и эффективные источники света.

История открытия

В создание лампы накаливания в том виде, в котором она известна на сегодняшний день, сделали свой вклад исследователи, как из России, так и из других стран мира.

Российский изобретатель Александр Лодыгин

Александр Лодыгин

До момента, когда изобретатель Александр Лодыгин из России начал трудиться над разработкой ламп накаливания, в ее истории нужно отметить некоторые важные события:

  • в 1809 году известный изобретатель Деларю из Англии создал свою первую лампу накаливания, оснащенную платиновой спиралью;
  • через почти 30 лет в 1938 году уже бельгийский изобретатель Жобар разработал угольную модель лампы накаливания;
  • изобретатель Генрих Гёбель из Германии в 1854 году уже представил первый вариант рабочего источника света.

Лампочка немецкого образца имела обугленную нить из бамбука, которая помещалась в вакуумированный сосуд. В течение пяти последующих лет Генрих Гёбель продолжал свои наработки и в конечном счете пришел к первому опытному варианту рабочей лампочки накаливания.

Изобретатель и первая практичная лампочка накаливания

Первая практичная лампочка

Джозеф Уилсон Суон, знаменитый физик и химик из Англии, в 1860 году явил миру свои первые успехи в области разработки источника света и за свои результаты был вознагражден патентом. Но некоторые трудности, которые возникли с созданием вакуума, показали неэффективную и не долгосрочную работу лампы Суона.В России, как уже отмечалось выше, исследованиями в области эффективных источников света занимался Александр Лодыгин. В России он смог добиться свечения в стеклянном сосуде угольного стержня, из которого предварительно был откачен воздух. В России история открытия лампочки накаливания началась в 1872 году. Именно в этом году Александру Лодыгины удались его эксперименты с угольным стержнем. Через два года он в России получает патент под номером 1619, который был выдан ему на нитевой вид лампы. Нить он заменил на стержень из угля, находившийся в вакуумной колбе.Ровно через год В. Ф. Дидрихсон значительно улучшил вид лампы накаливания, созданную в России Лодыгином. Усовершенствование заключалось в замене угольного стержня на несколько волосков.

 

Обратите внимание! В ситуации, когда один из них перегорал, происходило автоматическое включение другого.

Джозеф Уилсон Суон, который продолжал свои попытки усовершенствовать уже имеющеюся модель источника света, получает патент на лампочки. Здесь в качестве нагревательного элемента выступало угольное волокно. Но здесь оно располагалось уже в разреженной атмосфере из кислорода. Такая атмосфера позволила получить очень яркий свет.

Вклад Томаса Эдисона

В 70-х года позапрошлого столетия в изобретательскую гонку по созданию работающей модели лампы накаливания включился изобретатель из Америки — Томас Эдисон.

Томас Эдисон и лампа накаливания

Томас Эдисон

Он проводил исследования в вопросе применения в виде элемента накаливания нитей, произведенных из разнообразных материалов. Эдисон в 1879 году получает патент на лампочку, оснащенной платиновой нитью. Но через год он возвращается к уже проверенному угольному волокну и создает источник света со сроком эксплуатации в 40 часов.

Обратите внимание! Одновременно с работой по созданию эффективного источника света, Томас Эдисон создал поворотный тип бытового выключателя.

При том, что лампочки Эдисона работают всего лишь 40 часов, они начали активно вытеснять с рынка старый вариант газового освещения.

Результаты работ Александра Лодыгина

В то время, как на другом конце мира Томас Эдисон проводил свои эксперименты, в России аналогичными изысканиями продолжал заниматься Александр Лодыгин. Он в 90-х годах 19 века изобрел сразу несколько видов лампочек, нити которых были изготовлены из тугоплавких металлов.

Обратите внимание! Именно Лодыгин первым решился использовать вольфрамовую нить в качестве тела накаливания.

Александр Лодыгин и его лампочка

Лампочка Лодыгина

Кроме вольфрама он также предлагал использовать нити накаливания, изготовленные из молибдена, а также скручивать их в форме спирали. Такие свои нити Лодыгин размещал в колбах, из которых откачивался весь воздух. Вследствие таких действий нити предохранялись от кислородного окисления, что делало срок службы изделий значительно продолжительным.Первый тип коммерческой лампочки, произведенный в Америке, содержала вольфрамовую нить и изготавливалась по патенту Лодыгина.Также стоит отметить, что Лодыгиным были разработаны газонаполненные лампы, содержащие угольные нити и заполненные азотом.Таким образом, авторство первой лампочки накаливания, отправленной в серийное производство, принадлежит именно российскому исследователю Александру Лодыгину.

Особенности работы лампочки Лодыгина

Для современных ламп накаливания, которые являются прямыми потомками модели Александра Лодыгина, характерны:

  • отменный световой поток;
  • отличная цветопередача;
Шкала цветопередачи

Цветопередача лампы накаливания

  • низкий показатель конвекции и проводимости тепла;
  • температура накала нити — 3400 K;
  • при максимальном уровне показателя температуры накала коэффициент для полезного действия составляет 15 %.

Кроме этого данный тип источника света в ходе своей работы потребляет много электроэнергии, по сравнению с другими современными лампочками. Из-за конструкционных особенностей такие лампы могут работать примерно 1000 часов.Но, несмотря на то, что по многим критериям оценки данная продукция уступает более совершенным современным источникам света, она, благодаря своей дешевизне, все еще остается актуальной.

Заключение

В создании эффективной лампы накаливания участвовали изобретатели из разных стран. Но только российский ученый Александр Лодыгин смог создать самый оптимальный вариант, которым мы, собственно, и продолжаем пользоваться по сегодняшний день.

 

1posvetu.ru

Строение лампы накаливания и применяемые в ней материалы

Дата публикации: 20 июня 2015.

Устройство и назначение основных частей ламп накаливания

Разбирая строение лампы накаливания (рисунок 1, а) мы обнаруживаем, что основной частью ее конструкции является тело накала 3, которое под действием электрического тока накаливается вплоть до появления оптического излучения. На этом собственно и основан принцип действия лампы. Крепление тела накала внутри лампы осуществляется при помощи электродов 6, обычно удерживающих его концы. Через электроды также осуществляется подвод электрического тока к телу накала, то есть они являются еще внутренними звеньями выводов. При недостаточной устойчивости тела накала, используют дополнительные держатели 4. Держатели посредством впайки устанавливают на стеклянном стержне 5, именуемым штабиком, который имеет утолщение на конце. Штабик сопряжен со сложной стеклянной деталью – ножкой. Ножка, она изображена на рисунке 1, б, состоит из электродов 6, тарелочки 9, и штенгеля 10, представляющего собой полую трубочку через которую откачивается воздух из колбы лампы. Общее соединение между собой промежуточных выводов 8, штабика, тарелочки и штенгеля образует лопатку 7. Соединение производится путем расплавления стеклянных деталей, в процессе чего проделывается откачное отверстие 14 соединяющее внутреннюю полость откачной трубки с внутренней полостью колбы лампы. Для подвода электрического тока к нити накала через электроды 6 применяют промежуточные 8 и внешние выводы 11, соединяемые между собой электросваркой.

Устройство лампы накаливания

Рисунок 1. Устройство электрической лампы накаливания (а) и ее ножки (б)

Для изоляции тела накала, а также других частей лампочки от внешней среды, применяется стеклянная колба 1. Воздух из внутренней полости колбы откачивается, а вместо него закачивается инертный газ или смесь газов 2, после чего конец штенгеля нагревается и запаивается.

Для подвода к лампе электрического тока и ее крепления в электрическом патроне лампа оборудуется цоколем 13, крепление которого к горлу колбы 1 осуществляется при помощи цоколевочной мастики. На соответствующие места цоколя припаивают выводы лампы 12.

От того как расположено тело накала и какой оно формы зависит светораспределение лампы. Но касается это только ламп с прозрачными колбами. Если представить, что нить накала представляет собой равнояркий цилиндр и спроецировать исходящий от нее свет на плоскость перпендикулярную наибольшей поверхности светящей нити или спирали, то на ней окажется максимальная сила света. Поэтому для создания нужных направлений сил света, в различных конструкциях ламп, нитям накала придают определенную форму. Примеры форм нитей накала приведены на рисунке 2. Прямая неспирализированная нить в современных лампах накаливания почти не применяется. Связано это с тем, что с увеличением диаметра тела накала уменьшаются потери тепла через газ наполняющий лампу.

Конструкция тела накала

Рисунок 2. Конструкция тела накала:а – высоковольтной проекционной лампы; б – низковольтной проекционной лампы; в – обеспечивающая получение равнояркого диска

Большое количество тел накала подразделяют на две группы. Первая группа включает в себя тела накала, применяемые в лампах общего назначения, конструкция которых изначально задумывалась как источник излучения с равномерным распределением силы света. Целью конструирования таких ламп является получение максимальной световой отдачи, что достигается путем уменьшения числа держателей, через которые происходит охлаждение нити. Ко второй группе относят так называемые плоские тела накала, которые выполняют либо в виде параллельно расположенных спиралей (в мощных высоковольтных лампах), либо в виде плоских спиралей (в маломощных лампах низкого напряжения). Первая конструкция выполняется с большим числом молибденовых держателей, которые крепятся специальными керамическими мостиками. Длинная нить накала размещается в виде корзиночки, тем самым достигается большая габаритная яркость. В лампах накаливания, предназначенных для оптических систем, тела накала должны быть компактными. Для этого тело накала свертывают в дужку, двойную или тройную спираль. На рисунке 3 приведены кривые силы света, создаваемые телами накала различных конструкций.

Кривые силы света ламп накаливания

Рисунок 3. Кривые силы света ламп накаливания с различными телами накала:а – в плоскости, перпендикулярной оси лампы; б – в плоскости, проходящей через ось лампы; 1 – кольцевая спираль; 2 – прямая биспираль; 3 – спираль, расположенная по поверхности цилиндра

Требуемые кривые силы света ламп накаливания можно получить применением специальных колб с отражающими или рассеивающими покрытиями. Использование отражающих покрытий на колбе соответствующей формы позволяет иметь значительное разнообразие кривых силы света. Лампы с отражающими покрытиями называют зеркальными (рисунок 4). При необходимости обеспечить особо точное светораспределение в зеркальных лампах применяют колбы, изготовленные методом прессования. Такие лампы называются лампами-фарами. В некоторых конструкциях ламп накаливания имеются встроенные в колбы металлические отражатели.

Зеркальные лампы накаливания

Рисунок 4. Зеркальные лампы накаливания

Применяемые в лампах накаливания материалы

Металлы

Основным элементом ламп накаливания является тело накала. Для изготовления тела накала наиболее целесообразно применять металлы и другие материалы с электронной проводимостью. При этом пропусканием электрического тока тело будет накаливаться до требуемой температуры. Материал тела накала должен удовлетворять ряду требований: иметь высокую температуру плавления, пластичность, позволяющую тянуть проволоку различного диаметра, в том числе весьма малого, низкую скорость испарения при рабочих температурах, обуславливающую получение высокого срока службы, и тому подобных. В таблице 1 приведены температуры плавления тугоплавких металлов. Наиболее тугоплавким металлом является вольфрам, что наряду с высокой пластичностью и низкой скоростью испарения обеспечило его широкое использование в качестве тела накала ламп накаливания.

Таблица 1

Температура плавления металлов и их соединений

Металлы T, °С Карбиды и их смеси T, °С Нитриды T, °С Бориды T, °С
ВольфрамРений ТанталОсмий МолибденНиобий ИридийЦирконий Платина 34103180 30143050 26202470 24101825 1769 4TaC ++ HiC 4TaC ++ ZrC HfCTaC ZrCNbC TiCWC W2CMoC VnCScC SiC 3927

3927

38873877 35273427 31272867 28572687 25572377 2267

TaC ++ TaN HfNTiC + + TiNTaN ZrNTiN BN 3373

33073227

30872977 29272727

HfBZrB WB 30672987 2927

Скорость испарения вольфрама при температурах 2870 и 3270°С составляет 8,41×10-10 и 9,95×10-8 кг/(см²×с).

Из других материалов перспективным можно считать рений, температура плавления которого немного ниже, чем у вольфрама. Рений хорошо поддается механической обработке в нагретом состоянии, стоек к окислению, имеет меньшую скорость испарения, чем вольфрам. Имеются зарубежные публикации о получении ламп с вольфрамовой нитью с добавками рения, а также покрытия нити слоем рения. Из неметаллических соединений интерес представляет карбид тантала, скорость испарения которого на 20 – 30% ниже, чем у вольфрама. Препятствием к использованию карбидов, в частности карбида тантала, является их хрупкость.

В таблице 2 приведены основные физические свойства идеального тела накала, изготовленного из вольфрама.

Таблица 2

Основные физические свойства вольфрамовой нити

Температура, К Скорость испарения, кг/(м²×с) Удельное электрическое сопротивление, 10-6 Ом×см Яркость кд/м² Световая отдача, лм/Вт Цветовая температура, К
10001400 18002200 26003000 3400 5,32 × 10-352,51 × 10-238,81 × 10-171,24 × 10-128,41 × 10-109,95 × 10-83,47 × 10-6 24,9337,19 50,0563,48 77,4992,04 107,02 0,00121,04 51,2640 364013260 36000 0,00070,09 1,195,52 14,3427,25 43,20 10051418 18232238 26603092 3522

Важным свойством вольфрама является возможность получения его сплавов. Детали из них сохраняют устойчивую форму при высокой температуре. При нагреве вольфрамовой проволоки, в процессе термической обработки тела накала и последующих нагревах происходит изменение ее внутренней структуры, называемое термической рекристаллизацией. В зависимости от характера рекристаллизации тело накала может иметь большую или меньшую формоустойчивость. Влияние на характер рекристаллизации оказывают примеси и присадки, добавляемые в вольфрам в процессе его изготовления.

Добавка к вольфраму окиси тория ThO2 замедляет процесс его рекристаллизации и обеспечивает мелкокристаллическую структуру. Такой вольфрам является прочным при механических сотрясениях, однако он сильно провисает и поэтому не пригоден для изготовления тел накала в виде спиралей. Вольфрам с повышенным содержанием окиси тория используется для изготовления катодов газоразрядных ламп из-за его высокой эмиссионной способности.

Для изготовления спиралей применяют вольфрам с присадкой оксида кремния SiO2 вместе со щелочными металлами – калием и натрием, а также вольфрам, содержащий, кроме указанных, присадку оксида алюминия Al2O3. Последний дает наилучшие результаты при изготовлении биспиралей.

Электроды большинства ламп накаливания выполняют из чистого никеля. Выбор обусловлен хорошими вакуумными свойствами этого металла, выделяющего сорбированные в нем газы, высокими токопроводящими свойствами и свариваемостью с вольфрамом и другими материалами. Ковкость никеля позволяет заменять сварку с вольфрамом обжатием, обеспечивающим хорошую электро- и теплопроводность. В вакуумных лампах накаливания вместо никеля используют медь.

Держатели изготавливают как правило, из молибденовой проволоки, сохраняющей упругость при высокой температуре. Это позволяет поддерживать тело накала в растянутом состоянии даже после его расширения в результате нагрева. Молибден имеет температуру плавления 2890 К и температурный коэффициент линейного расширения (ТКЛР), в интервале от 300 до 800 К равный 55 × 10-7 К-1. Из молибдена делают также вводы в тугоплавкие стекла.

Выводы ламп накаливания изготавливают из медной проволоки, которую приваривают торцевой сваркой к вводам. У ламп накаливания малой мощности отдельные выводы отсутствуют, их роль выполняют удлиненные вводы, изготовленные из платинита. Для припаивания выводов к цоколю применяют оловянно-свинцовый припой марки ПОС-40.

Стекла

Штабики, тарелочки, штенгели, колбы и другие стеклянные детали, применяемые в одной и той же лампе накаливания, изготовляют из силикатного стекла с одинаковым температурным коэффициентом линейного расширения, что необходимо для обеспечения герметичности мест сварки этих деталей. Значения температурного коэффициента линейного расширения ламповых стекол должны обеспечивать получение согласованных спаев с металлами, используемыми для изготовления вводов. Наибольшее распространение получило стекло марки СЛ96-1 со значением температурного коэффициента, равным 96 × 10-7 К-1. Это стекло может работать при температурах от 200 до 473 К.

Одним из важных параметров стекла является интервал температур, в пределах которого оно сохраняет свариваемость. Для обеспечения свариваемости некоторые детали изготовляют из стекла марки СЛ93-1, отличающегося от стекла марки СЛ96-1 химическим составом и более широким интервалом температур, в котором оно сохраняет свариваемость. Стекло марки СЛ93-1 отличается повышенным содержанием окиси свинца. При необходимости уменьшения размеров колб применяют более тугоплавкие стекла (например, марки СЛ40-1), температурный коэффициент которых составляет 40 × 10-7 К-1. Эти стекла могут работать при температурах от 200 до 523 К. Наиболее высокую рабочую температуру имеет кварцевое стекло марки СЛ5-1, лампы накаливания из которого могут работать при 1000 К и более в течение нескольких сотен часов (температурный коэффициент линейного расширения кварцевого стекла 5,4 × 10-7 К-1). Стекла перечисленных марок прозрачны для оптического излучения в интервале длинн волн от 300 нм до 2,5 – 3 мкм. Пропускание кварцевого стекла начинается от 220 нм.

Вводы

Вводы изготовляют из материала, который наряду с хорошей электропроводностью должен иметь тепловой коэффициент линейного расширения, обеспечивающий получение согласованных спаев с применяемыми для изготовления ламп накаливания стеклами. Согласованными называют спаи материалов, значения теплового коэффициента линейного расширения которых во всем интервале температур, то есть от минимальной до температуры отжига стекла, отличаются не более чем на 10 – 15%. При впае металла в стекло лучше, если тепловой коэффициент линейного расширения металла несколько ниже, чем у стекла. Тогда при остывании впая стекло обжимает металл. При отсутствии металла, обладающего требуемым значением теплового коэффициента линейного расширения, приходится изготовлять не согласованные впаи. В этом случае вакуумно-плотное соединение металла со стеклом во всем диапазоне температур, а также механическая прочность впая обеспечиваются специальной конструкцией.

Согласованный спай со стеклом марки СЛ96-1 получают при использовании платиновых вводов. Дороговизна этого металла привела к необходимости разработки заменителя, получившего название "платинит". Платинит представляет собой проволоку из железоникелевого сплава с температурным коэффициентом линейного расширения меньшим, чем у стекла. При наложении на такую проволоку слоя меди можно получить хорошо проводящую биметаллическую проволоку с большим температурным коэффициентом линейного расширения, зависящим от толщины слоя наложенного слоя меди и теплового коэффициента линейного расширения исходной проволоки. Очевидно, что такой способ согласования температурных коэффициентов линейного расширения позволяет осуществлять согласование в основном по диаметральному расширению, оставляя несогласованным температурный коэффициент продольного расширения. Для обеспечения лучшей вакуумной плотности спаев стекла марки СЛ96-1 с платинитом и усиления смачиваемости поверх слоя меди, окисленного по поверхности до закиси меди, проволока покрывается слоем буры (натриевая соль борной кислоты). Достаточно прочные впаи обеспечиваются при использовании платиновой проволоки диаметром до 0,8 мм.

Вакуумно-плотный впай в стекло СЛ40-1 получают при использовании молибденовой проволоки. Эта пара дает более согласованный впай, чем стекло марки СЛ96-1 с платинитом. Ограниченное применение этого впая связано с дороговизной исходных материалов.

Для получения вакуумно-плотных вводов в кварцевое стекло необходимы металлы с весьма малым тепловым коэффициентом линейного расширения, которых не существует. Поэтому необходимый результат получаю благодаря конструкции ввода. В качестве металла используют молибден, отличающийся хорошей смачиваемостью кварцевым стеклом. Для ламп накаливания в кварцевых колбах применяют простые фольговые вводы.

Газы

Наполнение ламп накаливания газом позволяет повысить рабочую температуру тела накала без уменьшения срока службы из-за снижения скорости распыления вольфрама в газовой среде по сравнению с распылением в вакууме. Скорость распыления снижается с ростом молекулярной массы и давления наполняющего газа. Давление наполняющих газов составляет около 8 × 104 Па. Какой газ для этого использовать?

Использование газовой среды приводит к появлению тепловых потерь из-за теплопроводности через газ и конвекции. Для снижения потерь выгодно заполнять лампы тяжелыми инертными газами или их смесями. К таким газам относятся получаемые из воздуха азот, аргон, криптон и ксенон. В таблице 3 приведены основные параметры инертных газов. Азот в чистом виде не применяют из-за больших потерь, связанных с его относительно высокой теплопроводностью.

Таблица 3

Основные параметры инертных газов

Газ Молекулярная масса Потенциал ионизации, В Теплопроводность, 10-2 Вт/(м×К)
ВодородАргон КриптонКсенон 28,0139,94 83,70131,30 15,8015,69 13,9412,08 2,381,62 0,800,50

Источник: Афанасьева Е. И., Скобелев В. М., "Источники света и пускорегулирующая аппаратура: Учебник для техникумов", 2-е издание переработанное – Москва: Энергоатомиздат, 1986 – 272с.

artillum.ru

Что такое лампа накаливания и в чём её отличие от энергосберегающей лампы? | Вечные вопросы | Вопрос-Ответ

Запрет на продажу ламп накаливания мощностью от 75 Вт и более может быть снят. С такой инициативой выступает представитель фракции «Справедливая Россия» Андрей Крутов. Депутат считает, что прежде чем переходить на энергосберегающие технологии, следует провести ревизию состояния электросетей. Люминесцентные лампы, по словам Крутова, не позволяют сэкономить. Ведь большинство энергопотерь в России происходит не от ламп накаливания, а из-за общей изношенности инфраструктуры.

Продажа ламп накаливания была запрещена в 2009 году по инициативе Дмитрия Медведева, который на тот момент занимал пост президента РФ. Согласно приятому законопроекту, с 2011 года в России был введён полный запрет оборота источников света мощностью 100 Вт и более. Также планировалось с 2013 года ввести аналогичный запрет для ламп накаливания мощностью 75 Вт и более, а с 2014 года предполагалось полностью от них отказаться и перейти на энергосберегающие лампы.

Что такое лампа накаливания?

Лампа накаливания — источник света, который излучает световой поток в результате накала нити из металла (вольфрама).

Нить накала помещена в стеклянный сосуд, наполненный инертным газом (криптоном, азотом, аргоном). Принцип действия лампы накаливания основан на явлении нагрева проводника при прохождении через него электрического тока. Вольфрамовая нить накала при подключении к источнику тока раскаляется до высокой температуры, в результате чего излучает свет. Световой поток, излучаемый нитью накала, близок к естественному, дневному свету, поэтому не вызывает дискомфорта при длительном использовании.

Преимущества ламп накаливания:

  • относительно невысокая стоимость;
  • мгновенное зажигание при включении;
  • небольшие габаритные размеры;
  • широкий диапазон мощностей.

Недостатки ламп накаливания:

  • большая яркость самой лампы, что негативно воздействует на зрение при взгляде на лампу.

В чем отличие энергосберегающей лампы от лампочки накаливания?

Лампа накаливания Энергосберегающая лампа

Источник света, в котором преобразование электрической энергии в световую происходит в результате накаливания. До светящегося состояния в них нагревается металлический проводник (спираль из сплавов на основе вольфрама).

Электрическая лампа — это колба, которая наполнена парами ртути и аргона. На внутренние стенки лампы нанесён особый порошок (люминофор). При включении энергосберегающей лампочки пары ртути, находящиеся в лампе, создают ультрафиолетовое излучение, а оно, проходя через люминофор, находящийся на поверхностности лампы, преобразуется в свет.

Цена и срок службы

Низкая цена. Быстро перегорают, срок службы лампы накаливания — до 1000 часов. Причина выхода из строя лампы накаливания — перегорание нити накала.

Цена выше в 10–20 раз, чем у лампы накаливания, но она компенсируется долговечностью лампы — от 6 до 15 тысяч часов непрерывного горения.

Световая отдача

Низкий КПД (порядка 15 %). Остальные затраты энергии идут на нагрев. Температура разогретой нити достигает 2600–3000 ºС. Свет идёт только от вольфрамовой спирали.

Высокая световая отдача. Мощность соответствует пятикратной мощности лампы накаливания, то есть 12 Wt энергосберегающей соответствует 60 Wt обычной. Свет распределяется мягче и равномернее. Есть широкий выбор цвета свечения. Цвет зависит от количества нанесённого люминофора. Обычно на упаковке указывают следующие данные: 2700 К — тёплый белый свет, 4200 К — дневной свет, 6400 К — холодный белый свет.

Какую опасность представляют энергосберегающие лампы?

Энергосберегающие лампы содержат в своём составе в небольшом количестве ртуть, отравление малыми дозами паров которой может вызвать неврологические заболевания (меркуриализм, «ртутный тремор»). Выбрасывать люминесцентную просто в мусорный бак нельзя, о чём и предупреждает потребителя соответствующий значок на упаковке. Принимать такие лампы должны районные ДЭЗ и РЭУ. Однако на практике это работает далеко не везде.

  • Ультрафиолетовое излучение

При работе люминесцентных ламп небольшое количество ультрафиолетового излучения выходит наружу лампы через стеклянную колбу, что может быть потенциальной угрозой для людей с кожей, слишком чувствительной к этому излучению. Наиболее опасным является воздействие УФ-излучения на роговицу и сетчатку глаза. Поэтому энергосберегающие лампы не рекомендуется располагать ближе 3 метров от глаз.

  • Необычный цвет

Свет люминесцентной лампы отличается от света от лампы накаливания, и многие люди не могут к нему привыкнуть.

Почему хотят вернуть лампы накаливания?

По словам члена комитета Госдумы по энергетике Андрея Крутова, принятый депутатами закон о запрете ламп накаливания не встретил одобрения среди населения. «Мы получали множество обращений от граждан, для них стоимость новых энергоэффективных лампочек непомерно высока — ведь они зачастую в десять, а то и более раз дороже привычных ламп накаливания, при этом за прошедшие годы мы не заметили обещанной экономии на электропотреблении», — заявил Крутов.

По его словам, это неудивительно: эффект от энергосберегающих ламп полностью нивелируется устаревшим и энергонеэффективным промышленным оборудованием, линиями электропередач, в которых и происходит львиная доля потерь электроэнергии. «Получается, что за счёт населения мы пытались повысить энергоэффективность устаревшей инфраструктуры, которую в итоге никто менять не собирался», — утверждает парламентарий.

Кроме этого, за последние годы так и не были созданы пункты по сбору энергосберегающих ламп. Содержащие опасную для здоровья ртуть лампы просто выбрасываются с обычным мусором, что в результате наносит вред экологической обстановке.

Почему был введён запрет на продажу ламп накаливания?

В 2009 году Дмитрий Медведев предложил экономить энергозапасы и с этой целью озвучил предложение о запрете на продажу ламп накаливания и их замене на энергосберегающие лампы.

«Мы — действительно самая крупная энергетическая страна. Но это не значит, что мы должны жечь наши энергозапасы без всякого ума. Ещё много лет назад было сказано, что делать с отдельными энергетическими продуктами и почему нельзя топить нефтью. Но мы, к сожалению, продолжаем топить нефтью, в прямом и переносном смысле этого слова обогревая нашу планету», — такое заявление сделал в 2009 году Дмитрий Медведев на заседании президиума Государственного совета по вопросу повышения энергоэффективности российской экономики.

www.aif.ru

Лампа накаливания: конструкция и особенности

Лампа накаливания – электрический осветительный прибор, принцип действия обусловлен нагревом до высоких температур нити тугоплавкого металла. Тепловой эффект тока известен давно (1800 год). С течением времени вызывает сильный нагрев (выше 500 градусов Цельсия), заставляя нить светиться. В стране вещички носят имя Ильича, на деле продвинутые историки бессильны однозначно дать ответ, кого назвать изобретателем лампы накаливания.

Конструкция ламп накаливания

Изучим строение прибора:

  • Рабочей частью лампы накаливания выступает вольфрамовая нить. Удельное сопротивление металла в три раза выше меди. Невысокий показатель. Вольфрам выбран разогреваемым телом за тугоплавкость, сечение нити уменьшено до предела, повышая электрическое сопротивление. Температура таяния металл превышает 3000 градусов Цельсия.
  • Стеклянная колба лампы накаливания содержит инертный газ. Позволяя уберечь спираль от сгорания, убирает необходимость создания вакуума (формирует отрицательное давление колбы, понижает механическую прочность конструкции). Лампочка накаливания

    Лампочка накаливания

  • Спираль лампы накаливания подпирается молибденовыми держателями, питается током никелевых электродов. Материалы выбраны сообразно назначению. Молибден тугоплавкий, никеля температура ликвидуса пониже, зато наделен низким коэффициентом теплового расширения. Место контакта со спиралью избегает механических деформаций, продляет срок службы лампы накаливания.
  • Электроды посредством медных проводников соединяются с контактными площадками цоколя. Редко лампа накаливания снабжается собственным плавким предохранителем. Также внутри цоколя.

История создания ламп накаливания

Спирали далеко не сразу стали изготавливать из вольфрама. Применялись графит, бумага, бамбук. Много людей шло параллельным путем, создавая лампы накаливания.

Бессильны привести список 22 имен ученых, называемых зарубежными писателями авторами изобретения. Неправильно приписывать заслуги Эдисону, Лодыгину. Сегодня лампы накаливания далеки от совершенства, стремительно теряют маркетинговую привлекательность. Превышение амплитуды питающего напряжения на 10% (половину пути — 5% — РФ проделала в 2003 году, подняв вольтаж) номинала сокращает срок службы вчетверо. Снижение параметра закономерно урезает отдачу светового потока: 40% теряется при эквивалентном относительном изменении характеристик питающей сети в меньшую сторону.

Пионерам гораздо хуже. Джозеф Сван (Joseph Swan) отчаялся добиться достаточной разреженности воздуха колбы лампы накала. Насосы (ртутные) того времени неспособны выполнить задачу. Нить сгорала посредством сохранившегося внутри кислорода.

Смысл ламп накала довести спирали до степени нагрева, тело начинает светиться. Сложностей добавляло отсутствие в середине XIX века высокоомных сплавов – квота преобразования силы электрического тока сформирована увеличенным сопротивлением проводящего материала.

Усилия ученых мужей ограничивались следующими направлениями:

  1. Выбор материала нити. Критериями выступали одновременно высокое сопротивление, устойчивость к горению. Волокна бамбука, являющегося изолятором, покрывали тонким слоем проводящего графита. Малая площади проводящего слоя угля повышало сопротивление, давая нужный результат.
  2. Однако древесная основа быстро воспламенялась. Вторым направлением считаем попытки создать полный вакуум. Кислород известен с конца XVIII века, ученые мужи быстро доказали: элемент участвует в горении. В 1781 году Генри Кавендиш определил состав воздуха, начиная разрабатывать лампами накала, слуги науки ведали: земная атмосфера разрушает нагретые тела.
  3. Важно передать напряжение нити. Шла работа, преследующая цели создания разъемных, контактных частей цепи. Понятно, тонкий слой угля снабжен большим сопротивлением, как подвести электричество? Трудно поверить, пытаясь достичь приемлемых результатов, использовали ценные металлы: платина, серебро. Получая приемлемую проводимость. Недешевыми путями удавалось избежать нагрева внешней цепи, контактов, нить накалялась.
  4. Отдельно отметим резьбу цоколя Эдисона, используемую поныне (Е27). Удачная идея, легшая в основу быстро заменяемых лампочек накала. Прочие способы создания контакта, наподобие пайки, мало годятся. Соединение способно распасться, разогретое действием тока.
Лампа Эдисона

Лампа Эдисона

Стеклодувы XIX века достигли профессиональных высот,  колбы изготавливали запросто. Отто фон Герике, конструируя генератор статического электричества, рекомендовал сферическую колбу залить серой. Материал застынет — стекло разбить. Получался идеальный шар, при трении собирал заряд, отдавая стальному стержню, проходящему через центр конструкции.

Пионеры отрасли

Можете прочесть: идея подчинить электричество целям освещения впервые реализована сэром Гемфри Дэви. Вскоре после создания вольтова столба ученый вовсю экспериментировал с металлами. Выбрал благородную платину за высокую температуру плавления – прочие материалы воздухом быстро окислялись. Попросту сгорали. Источник света вышел неяркий, давая основу сотням последующих наработок, показав направление движения желающим получить конечный результат: осветить, заручившись помощью электричества.

Произошло в 1802 году, ученому исполнилось 24 года, позже (1806) Гемфри Дэви представил суду общественности вполне работоспособный разрядный осветительный прибор, в конструкции которого ведущую роль занимали два угольных стрежня. Следует отнести короткую жизнь столь блистательного светила небосвода науки, давшего миру представление о хлоре, йоде, ряде щелочных металлов, на постоянные эксперименты. Смертельные опыты по вдыханию угарного газа, работы с оксидом азота (мощным отравляющим веществом). Авторы отдали честь блистательным подвигам, сократившим жизнь ученого.

Осветительные приборы Дэви

Осветительные приборы Дэви

Гемфри забросил, вырезав целое десятилетие исследований осветительных приборов, вечно занятый. Сегодня Дэви называют отцом электролиза. Трагедия 1812 года Felling Colliery наложила глубокий отпечаток, помрачив сердца многих. Сэр Гемфри Дэви пополнил ряды занявшихся разработкой безопасного источника света, уберегающего шахтёров. Электричество подходило мало, не существовало мощных надежных источников энергии. Чтобы рудничный газ перестал взрываться временами, применялись разные меры, наподобие металлической сетки-диффузора, препятствующей распространению пламени.

Сэр Гемфри Дэви сильно опередил время. Лет примерно на 70. Конец XIX века лавинообразно выдал новые конструкции, призванные вырвать человечество из вечной тьмы, благодаря использованию электричества. Одним из первых Дэви отметил зависимость сопротивления материалов от температуры, позволяя позже Георгу Ому получить знаменитый закон для участка цепи. Спустя полвека открытие было положено в основу создания Карлом Вильгельмом Сименсом первого электронного термометра.

6 октября 1835 года Джеймс Боумэн Линдсей продемонстрировал лампочку накала, окруженную стеклянной колбой для защиты от действия атмосферы. Как выразился изобретатель: можно было читать книгу, рассеивая темноту на расстоянии полутора футов от подобного источника. Джеймс Боумэн, считают общепризнанные источники, является автором идеи защиты нити накала стеклянной колбой. Правда?

Джеймс Боумен Линдсей

Джеймс Боумен Линдсей

Склонны утверждать, в этом месте мировая история немного запуталась. Первый эскиз подобного устройства датируется 1820 годом. Приписывается почему-то Уорену де ла Ру. Которому было… 5 лет от роду. Одинокий исследователь заметил несуразицу, поставив дату… 1840 год. Бессилен детсадовец сделать столь великое изобретение. Причем забылись впопыхах демонстрации Джеймса Боумэна. Многие исторические книги ( одна 1961 года, авторства Льюиса) так трактовали неведомо уже откуда взявшуюся картинку. Видимо, автор ошибся, другой источник, 1986 года Джозефа Стоера, относит изобретение на счет Августа Артура де ла Рива (1801 года рождения). Гораздо лучше соответствует действительности, объясняя демонстрации Джеймса Боумэна пятнадцатью годами позже.

Прошло незамеченным русскоязычным доменом. Английские источники проблема трактуют следующим образом: имена де ла Ру и де ла Рив явно перепутаны, касаться могут минимум четырех личностей. Физики Уорен де ла Ру, Август Артур де ла Рив упомянуты, первый в 1820 году посещал детсад, образно говоря. Прояснить историю могут отцы упомянутых мужей: Томас де ла Ру (1793 – 1866), Чарльз Гаспар де ла Рив (1770 – 1834). Неизвестный джентльмен (леди) провел целое исследование, убедительно доказал: ссылка на фамилию де ла Ру несостоятельна, сослался горой научной литературы начала XX — конца XIX века.

Неизвестный потрудился просмотреть патенты Уорена де ла Ру, набралось девять штук. Лампы накала описываемой конструкции отсутствуют. Августа Артура де ла Рива, начавшего публикацию научных трудов в 1822 году, сложно представить изобретающим стеклянную колбу. Посещал Англию – родину лампочки накала – исследовал электричество. Желающие могут написать автору статьи англоязычного сайта по электронной почте [email protected] Пишет «ежков»: с удовольствием примет к сведению информацию, касающуюся вопроса.

Истинный изобретатель лампочки накала

Достоверно известно, в 1879 году Эдисон запатентовал (US Patent 223898) первую лампочку накала. Потомки зафиксировали событие. Касаемо более ранних публикаций, авторство вызывает сомнение. Неизвестен подаривший миру коллекторный двигатель. Сэр Гемфри Дэви отказался брать патент на изобретенный безопасный фонарь для шахты, сделав изобретение общедоступным. Подобные прихоти создают немалую путаницу. Бессильны выяснить, кто первым придумал помещать нить накала внутрь стеклянной колбы, обеспечив работоспособность конструкции, используемой повсеместно.

Лампы накаливания выходят из моды

Лампа накаливания использует вторичный принцип производства света. Достигает высокой температуры нить. КПД устройств мал, большая часть энергии расходуется впустую. Современные нормы диктуют стране беречь энергию. В моде разрядные, светодиодные лампочки. Навсегда остались в памяти Гемфри Дэви, де ла Ру, де ла Рив, Эдисон, приложившие руку, потрудившиеся вырвать человечество из тьмы.

Обратите внимание, Чарльз Гаспар де ла Рив скончался в 1834 году. Следующей осенью прошла первая публичная демонстрация… Некто нашел записи погибшего исследователя? Вопрос разрешит время, ибо все тайное откроется. Читатели обратили внимание: неизвестная сила подталкивала Дэви попробовать использовать защитную колбу, помогая шахтерам. Сердце ученого оказалось чересчур большим увидеть явный намек. Нужной информацией англичанин обладал…

vashtehnik.ru