Как сделать правильный расчет площади воздуховодов. Инженерная помощь расчет площади воздуховодов


Инженерная помощь расчет площади фасонных изделий. Как рассчитать сечение и диаметр воздуховода

Параметры показателей микроклимата определяются положениями ГОСТ 12.1.2.1002-00, 30494-96, СанПин 2.2.4.548, 2.1.2.1002-00. На основании существующих государственных нормативных актов разработан Свод правил СП 60.13330.2012. Скорость воздуха в должна обеспечивать выполнение существующих норм.

Что учитывается при определении скорости движения воздуха

Для правильного выполнения расчетов проектировщики должны выполнять несколько регламентируемых условий, каждое из них имеет одинаково важное значение. Какие параметры зависят от скорости движения воздушного потока?

При хранении компрессора прецизионные устройства управления оснащены устройствами последовательности фаз, которые предотвращают их повреждение из-за неправильного соединения. Достаточная фильтрация воздуха является одним из важнейших требований в центрах обработки данных, где важно не только обеспечить непрерывную работу устройства, но и защитить данные. Не менее важно обеспечить отличное качество приточного воздуха в административных зданиях.

Точный контроль фильтров кондиционера устанавливается по диагонали, чтобы они могли подняться вверх до входа в теплообменник. Их большая площадь поверхности уменьшает скорость их прохождения, что обеспечивает лучшую фильтрацию воздуха и более низкое потребление энергии.

Уровень шума в помещении

В зависимости от конкретного использования помещений санитарные нормы устанавливают следующие показатели максимального звукового давления.

Таблица 1. Максимальные значения уровня шума.

Превышение параметров допускается только в кратковременном режиме во время пуска/остановки вентиляционной системы или дополнительного оборудования.Уровень вибрации в помещении Во время работы вентиляторов продуцируется вибрация. Показатели вибрации зависят от материала изготовления воздуховодов, способов и качества виброгасящих прокладок и скорости движения воздушного потока по воздуховодам. Общие показатели вибрации не могут превышать установленные государственными организациями предельные значения.

Цвет устройства не отличает их от других широко используемых офисных принадлежностей. Устройства изготовлены из металлической рамы и усилены алюминиевыми профилями, которые прикреплены к дверям или металлическим листам. Последние изолированы звуковым и теплоизоляционным материалом - полиуретаном, который, в свою очередь, покрыт тонким слоем пластиковой пленки.

Общая толщина двери составляет 25 мм. Когда воздух, рециркулированный воздух поступает в нижнюю часть воздуха, его решетки могут быть установлены двумя различными способами: стандартные решетки доступа установлены на передней панели прибора, но также возможно установить решетку в точном контроле кондиционера внизу.

Таблица 2. Максимальные показатели допустимой вибрации.

При расчетах подбирается оптимальная скорость воздуха, не усиливающая вибрационные процессы и связанные с ними звуковые колебания. Система вентиляции должна поддерживать в помещениях определенный микроклимат.

Поток рециркулируемого воздуха к устройствам, когда воздух поднимается вверх и подбрасывается ниже искусственного пола в каналах, или может быть выполнен выпуск и передняя панель, чтобы поток воздуха сливался по полу. Это дополнительная функция, которая не входит в комплект стандартной измерительной аппаратуры для контроля точности. Такая система может работать в одном из трех режимов.

Этот режим активируется, когда температура окружающего воздуха настолько низкая, что воздух может охлаждать циркулирующую воду в теплообменнике, чтобы температура возвратной воды возвращалась наружу устройства. Если температура наружного воздуха выше, и уже невозможно обеспечить адекватные параметры возврата для внешнего блока, один или два компрессора включаются на определенный промежуток времени. Последние работают только для обеспечения стабильной поддержки точных параметров управления. Этот режим работы также экономит энергию, хотя и не так эффективен, как работает только с режимом свободного охлаждения. Свободное охлаждение и механическое охлаждение. . Системы охлаждения и охлаждения.

Значения по скорости движения потока, влажности и температуре содержатся в таблице.

Таблица 3. Параметры микроклимата.

Еще один показатель, принимаемый во внимание во время расчета скорости потока – кратность обмена воздуха в системах вентиляции. С учетом их использования санитарные нормы устанавливают следующие требования по воздухообмену.

Работа механической системы охлаждения. Обе системы работают и регулируются отдельно, независимо друг от друга. Оба источника используют один теплообменник. Теплообменник в два раза больше, чем стандартный блок, но из-за его более высоких размеров достигается более высокая эффективность теплопередачи.

Эта система обеспечивает бесперебойную работу оборудования, даже если одна из работ источника прерывается по какой-либо причине. Источником по умолчанию является холодная вода, которая может быть подключена к зданию центральной системы холодной воды, а фреоновая цепь - в качестве резервной системы, которая подключается к дренажному конденсатору или внутреннему конденсатору с водяным охлаждением. Первичный - подключен к центральной системе холодной воды здания, а резервный источник может быть подключен к генератору холодной воды. По желанию источника может быть контур фреона и вторичный контур воды. . Две системы охлаждения источника с двумя контурами воды.

Таблица 4. Кратность воздухообмена в различных помещениях.

Бытовые
Бытовые помещения Кратность воздухообмена
Жилая комната (в квартире или в общежитии) 3м 3 /ч на 1м 2 жилых помещений
Кухня квартиры или общежития 6-8
Ванная комната 7-9
Душевая 7-9
Туалет 8-10
Прачечная (бытовая) 7
Гардеробная комната 1,5
Кладовая 1
Гараж 4-8
Погреб 4-6
Промышленные
Промышленные помещения и помещения большого объема Кратность воздухообмена
Театр, кинозал, конференц-зал 20-40 м 3 на человека
Офисное помещение 5-7
Банк 2-4
Ресторан 8-10
Бар, Кафе, пивной зал, бильярдная 9-11
Кухонное помещение в кафе, ресторане 10-15
Универсальный магазин 1,5-3
Аптека (торговый зал) 3
Гараж и авторемонтная мастерская 6-8
Туалет (общественный) 10-12 (или 100 м 3 на один унитаз)
Танцевальный зал, дискотека 8-10
Комната для курения 10
Серверная 5-10
Спортивный зал не менее 80 м 3 на 1 занимающегося и не менее 20 м 3 на 1 зрителя
Парикмахерская (до 5 рабочих мест) 2
Парикмахерская (более 5 рабочих мест) 3
Склад 1-2
Прачечная 10-13
Бассейн 10-20
Промышленный красильный цел 25-40
Механическая мастерская 3-5
Школьный класс 3-8

Алгоритм расчетов Скорость воздуха в воздуховоде определяется с учетом всех вышеперечисленных условий, технические данные указываются заказчиком в задании на проектирование и монтаж вентиляционных систем. Главный критерий при расчетах скорости потока – кратность обмена. Все дальнейшие согласования делаются за счет изменения формы и сечения воздуховодов. Расход в зависимости от скорости и диаметра воздуховода можно взять из таблицы.

Таблица 5. Расход воздуха в зависимости от скорости потока и диаметра воздуховода.

Самостоятельный расчет

К примеру, в помещении объемом 20 м 3 согласно требованиям санитарных норм для эффективной вентиляции нужно обеспечить трехкратную смену воздуха. Это значит, что за один час сквозь воздуховод должно пройти не менее L = 20 м 3 ×3= 60 м 3 . Формула расчета скорости потока V= L / 3600× S, где:

V – скорость потока воздуха в м/с;

L – расход воздуха в м 3 /ч;

S – площадь сечения воздуховодов в м 2 .

Возьмем круглый воздуховод Ø 400 мм, площадь сечения равняется:

В нашем примере S = (3.14×0,4 2 м)/4=0,1256 м 2 . Соответственно, для обеспечения нужной кратности обмена воздуха (60 м 3 /ч) в круглом воздуховоде Ø 400 мм (S = 0,1256 м 3) скорость воздушного потока равняется: V= 60/(3600×0,1256) ≈ 0,13 м/с.

С помощью этой же формулы при заранее известной скорости можно рассчитать объем воздуха, перемещающийся по воздуховодам в единицу времени.

L = 3600×S (м 3)×V(м/с). Объем (расход) получается в квадратных метрах.

Как уже описывалось ранее, от скорости воздуха зависят и показатели шумности вентиляционных систем. Для минимизации негативного влияния этого явления инженеры сделали расчеты максимально допустимых скоростей воздуха для различных помещений.

По такому же алгоритму определяется скорость воздуха в воздуховоде при расчете подачи тепла, устанавливаются поля допусков для минимизации потерь на содержание зданий в зимний период времени, подбираются вентиляторы по мощности. Данные по воздушному потоку требуются и для уменьшения потерь давления, а это позволяет повышать коэффициент полезного действия вентиляционных систем и сокращает потребление электрической энергии.

Расчет выполняется по каждому отдельному участку, с учетом полученных данных подбираются параметры главных магистралей по диаметру и геометрии. Они должны успевать пропускать откачанный воздух из всех отдельных помещений. Диаметр воздуховодов выбирается таким образом, чтобы минимизировать шумность и потери на сопротивление. Для расчетов кинематической схемы важны все три показатели вентиляционной системы: максимальный объем нагнетаемого/удаляемого воздуха, скорость передвижения воздушных масс и диаметр воздуховодов. Работы по расчету вентиляционных систем относятся к категории сложных с инженерной точки зрения, выполнять их могут только профессиональные специалисты со специальным образованием.

Для обеспечения постоянных значений скорости воздуха в каналах с различным сечением используются формулы:

После расчета за окончательные данные принимаются ближайшие значения стандартных трубопроводов. За счет этого уменьшается время монтажа оборудования и упрощается процесс его периодического обслуживания и ремонта. Еще один плюс – уменьшение сметной стоимости вентиляционной системы.

Для воздушного обогрева жилых и производственных помещений скорости регулируются с учетом температуры теплоносителя на входе и выходе, для равномерного рассеивания потока теплого воздуха продумывается схема монтажа и размеры вентиляционных решеток. Современные системы воздушного обогрева предусматривают возможность автоматической регулировки скорости и направления потоков. Температура воздуха не может превышать +50°С на выходе, расстояние до рабочего места не менее 1,5 м. Скорость подачи воздушных масс нормируется действующими государственными стандартами и отраслевыми актами.

Во время расчетов по требованию заказчиков может учитываться возможность монтажа дополнительных ответвлений, с этой целью предусматривается запас производительности оборудования и пропускной способности каналов. Скорости потока рассчитываются таким образом, чтобы после увеличения мощности вентиляционных систем они не создавали дополнительную звуковую нагрузку на присутствующих в помещении людей.

Выбор диаметров выполняется от минимально приемлемого, чем меньше габариты – тем универсальное система вентиляции, тем дешевле обходится ее изготовление и монтаж. Системы местных отсосов рассчитываются отдельно, могут работать как в автономном режиме, так и подключаться к существующим вентиляционным системам.

Государственные нормативные документы устанавливают рекомендованные скорости движения в зависимости от расположения и назначения воздуховодов. При расчетах нужно придерживаться этих параметров.

Тип и место установки воздуховода и решетки Вентиляция
Естественная Механическая
Воздухоприемные жалюзи 0,5-1,0 2,0-4,0
Каналы приточных шахт 1,0-2,0 2,0-6,0
Горизонтальные сборные каналы 0,5-1,0 2,0-5,0
Вертикальные каналы 0,5-1,0 2,0-5,0
Приточные решетки у пола 0,2-0,5 0,2-0,5
Приточные решетки у потолка 0,5-1,0 1,0-3,0
Вытяжные решетки 0,5-1,0 1,5-3,0
Вытяжные шахты 1,0-1,5 3,0-6,0

Внутри помещений воздух не может двигаться со скоростью более 0,3 м/с, допускается кратковременное превышение параметра не более чем 30%. Если в помещении имеется две системы, то скорость воздуха в каждой из них должна обеспечивать не менее 50% расчетного объема подачи или удаления воздуха.

Пожарные организации выдвигают свои требования по скорости перемещения воздушных масс в воздуховодах в зависимости от категории помещения и особенностей технологического процесса. Нормативы направлены на уменьшение скорости распространения дыма или огня по воздуховодам. В случае необходимости на вентиляционных системах должны устанавливаться клапаны и отсекатели. Срабатывание устройств происходит после сигнала датчика или выполняется вручную ответственным лицом. В одну систему вентиляции можно подключать только определенные группы помещений.

В холодный период времени в отапливаемых зданиях температура воздуха в результате функционирования вентиляционной системы не может понижаться ниже нормируемых. Нормируемая температура обеспечивается до начала рабочей смены. В теплый период времени эти требования не актуальны. Движение воздушных масс не должно ухудшать предусмотренные СанПин 2.1.2.2645 нормативы. Для достижения нужных результатов во время проектирования систем изменяется диаметр воздуховодов, мощность и количество вентиляторов и скорости потока.

Принимаемые расчетные данные по параметрам движения в воздуховодах должны обеспечивать:

  1. Выполнение параметров микроклимата в помещениях, поддержку качества воздуха в регламентируемых пределах. При этом принимаются меры по снижению непродуктивных тепловых потерь. Данные берутся как из существующих нормативных документов, так и из технического задания заказчиков.
  2. Скорость движения воздушных масс в рабочих зонах не должна вызывать сквозняки, обеспечивать приемлемую комфортность пребывания в помещении. Механическая вентиляция предусматривается только в тех случаях, когда добиться желаемых результатов за счет естественной невозможно. Кроме этого, механическая вентиляция обязательно монтируется в цехах с вредными условиями труда.

Во время расчетов показателей движения воздуха в системах с естественной вентиляцией берется среднегодовое значение разности плотности внутреннего и наружного воздуха. Минимальные фактические данные по производительности должны обеспечивать допустимые нормативные значения кратности обмена воздуха.

Комментариев:

  • Факторы, оказывающие влияние на размеры воздухопроводов
  • Расчет габаритов воздухопровода
  • Подбор габаритов под реальные условия

Для передачи приточного или вытяжного воздуха от вентиляционных установок в гражданских или производственных зданиях применяются воздухопроводы различной конфигурации, формы и размера. Зачастую их приходится прокладывать по существующим помещениям в самых неожиданных и загроможденных оборудованием местах. Для таких случаев правильно рассчитанное сечение воздуховода и его диаметр играют важнейшую роль.

Факторы, оказывающие влияние на размеры воздухопроводов

На проектируемых или вновь строящихся объектах удачно проложить трубопроводы вентиляционных систем не составляет большой проблемы – достаточно согласовать месторасположение систем относительно рабочих мест, оборудования и других инженерных сетей. В действующих промышленных зданиях это сделать гораздо сложнее в силу ограниченного пространства.

Этот и еще несколько факторов оказывают влияние на расчет диаметра воздуховода:

  1. Один из главных факторов – это расход приточного или вытяжного воздуха за единицу времени (м 3 /ч), который должен пропустить данный канал.
  2. Пропускная способность также зависит от скорости воздуха (м/с). Она не может быть слишком маленькой, тогда по расчету размер воздухопровода выйдет очень большим, что экономически нецелесообразно. Слишком высокая скорость может вызвать вибрации, повышенный уровень шума и мощности вентиляционной установки. Для разных участков приточной системы рекомендуется принимать различную скорость, ее значение лежит в пределах от 1.5 до 8 м/с.
  3. Имеет значение материал воздуховода. Обычно это оцинкованная сталь, но применяются и другие материалы: различные виды пластмасс, нержавеющая или черная сталь. У последней самая высокая шероховатость поверхности, сопротивление потоку будет выше, и размер канала придется принять больше. Значение диаметра следует подбирать согласно нормативной документации.

В Таблице 1 представлена нормаль размеров воздуховодов и толщина металла для их изготовления.

Таблица 1

Примечание: Таблица 1 отражает нормаль не полностью, а только самые распространенные размеры каналов.

Воздуховоды производят не только круглой, но и прямоугольной и овальной формы. Их размеры принимаются через значение эквивалентного диаметра. Также новые методы изготовления каналов позволяют использовать металл меньшей толщины, при этом повышать в них скорость без риска вызвать вибрации и шум. Это касается спирально-навивных воздухопроводов, они имеют высокую плотность и жесткость.

Вернуться к оглавлению

Расчет габаритов воздухопровода

Сначала необходимо определиться с количеством приточного или вытяжного воздуха, которое требуется доставить по каналу в помещение. Когда эта величина известна, площадь сечения (м 2) рассчитывают по формуле:

В этой формуле:

  • ϑ – скорость воздуха в канале, м/с;
  • L – расход воздуха, м 3 /ч;
  • S – площадь поперечного сечения канала, м 2 ;

Для того чтобы связать единицы времени (секунды и часы), в расчете присутствует число 3600.

Диаметр воздуховода круглого сечения в метрах можно высчитать исходя из площади его сечения по формуле:

S = π D 2 / 4, D 2 = 4S / π, где D – величина диаметра канала, м.

Порядок расчета размера воздухопровода следующий:

  1. Зная расход воздуха на данном участке, определяют скорость его движения в зависимости от назначения канала. В качестве примера можно принять L = 10 000 м 3 /ч и скорость 8 м/с, так как ветка системы – магистральная.
  2. Вычисляют площадь сечения: 10 000 / 3600 х 8 = 0.347 м 2 , диаметр будет – 0,665 м.
  3. По нормали принимают ближайший из двух размеров, обычно берут тот, который больше. Рядом с 665 мм есть диаметры 630 мм и 710 мм, следует взять 710 мм.
  4. В обратном порядке производят расчет действительной скорости воздушной смеси в воздухопроводе для дальнейшего определения мощности вентилятора. В данном случае сечение будет: (3.14 х 0.71 2 / 4) = 0.4 м 2 , а реальная скорость – 10 000 / 3600 х 0.4 = 6.95 м/с.
  5. В том случае если необходимо проложить канал прямоугольной формы, его габариты подбирают по рассчитанной площади сечения, эквивалентного круглому. То есть высчитывают ширину и высоту трубопровода так, чтобы площадь равнялась 0.347 м 2 в данном случае. Это может быть вариант 700 мм х 500 мм или 650 мм х 550 мм. Такие воздухопроводы монтируют в стесненных условиях, когда место для прокладки ограничено технологическим оборудованием или другими инженерными сетями.

mizhu.ru

Расчет воздуховодов, площади сечения, сопротивления сети, мощности калориферов

Расчет воздуховодов или проектирование систем вентиляции

Ras

В создании оптимального микроклимата помещений наиболее важную роль играет вентиляция. Именно она в значительной степени обеспечивает уют и гарантирует здоровье находящихся в помещении людей. Созданная система вентиляции позволяет избавиться от множества проблем, возникающих в закрытом помещении: от  загрязнения воздуха парами, вредными газами, пылью органического и неорганического происхождения, избыточным теплом. Однако предпосылки хорошей работы вентиляции и качественного воздухообмена закладываются задолго до сдачи объекта в эксплуатацию, а точнее, на стадии создания проекта вентиляции.  Производительность систем вентиляции зависит от размеров воздуховодов, мощности вентиляторов, скорости движения воздуха и других параметров будущей магистрали. Для проектирования системы вентиляции необходимо осуществить большое количество инженерных расчетов, которые учтут не только площадь помещения, высоту его перекрытий, но и множество других нюансов.

Расчет площади сечения воздуховодов

После того, как вы определили производительность вентиляции, можно переходить к расчету размеров (площади сечения) воздуховодов.

Расчет площади воздуховодов определяется по данным о необходимом потоке, подаваемом в помещение и по максимально допустимой скорости потока воздуха в канале. Если допустимая скорость потока будет выше нормы, то это приведет к потере давления на местные сопротивления, а также по длине, что повлечет за собой увеличение затрат электроэнергии. Также правильный расчет площади сечения воздуховодов необходим для того, чтобы уровень аэродинамического шума и вибрация не превышали норму.

При расчете нужно учитывать, что если вы выберете большую площадь сечения воздуховода, то скорость воздушного потока снизится, что положительно повлияет и на снижение аэродинамического шума, а также на затраты по электроэнергии. Но нужно знать, что в этом случае стоимость самого воздуховода будет выше. Однако использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, так как их сложно разместить в запотолочном пространстве. Уменьшить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В то же время монтировать сеть из круглых гибких воздуховодов проще и быстрее.

Поэтому при выборе воздуховодов обычно подбирают вариант, наиболее подходящий и по удобству монтажа, и по экономической целесообразности.

Площадь сечения воздуховода определяется по формуле:

Sс = L * 2,778 / V, где

Sс — расчетная площадь сечения воздуховода, см²;

L — расход воздуха через воздуховод, м³/ч;

V — скорость воздуха в воздуховоде, м/с;

2,778 — коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры).

Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.

Фактическая площадь сечения воздуховода определяется по формуле:

S = π * D² / 400 — для круглых воздуховодов,

S = A * B / 100 — для прямоугольных воздуховодов, где

S — фактическая площадь сечения воздуховода, см²;

D — диаметр круглого воздуховода, мм;

A и B — ширина и высота прямоугольного воздуховода, мм.

Расчет сопротивления сети воздуховодов

После того как вы рассчитали площадь сечения воздуховодов, необходимо определить потери давления в вентиляционной сети (сопротивление водоотводной сети). При проектировании сети необходимо учесть потери давления в вентиляционном оборудовании. Когда воздух движется по воздуховодной магистрали, он испытывает сопротивление. Для того чтобы преодолеть это сопротивление, вентилятор должен создавать определенное давление, которое измеряется в Паскалях (Па). Для выбора приточной установки нам необходимо рассчитать это сопротивление сети.

Для расчета сопротивления участка сети используется формула:

P=R*L+Ei*V2*Y/2

Где R – удельные потери давления на трение на участках сети

L – длина участка воздуховода (8 м)

Еi – сумма коэффициентов местных потерь на участке воздуховода

V – скорость воздуха на участке воздуховода, (2,8 м/с)

Y – плотность воздуха (принимаем 1,2 кг/м3).

Значения R определяются по справочнику (R – по значению диаметра воздуховода на участке d=560 мм и V=3 м/с). Еi – в зависимости от типа местного сопротивления.

В качестве примера, результаты расчета воздуховода и сопротивления сети приведены в таблице:

№ уч. Gм3/ч Vм/с dмм МПа RПа/м R*LПа Еi WПа РПа
1 2160 5 2,8 560 4,7 0,018 0,09 2,1 9,87 9,961
2 2160 3 2,8 560 4,7 0,018 0,054 2,4 11,28 11,334
3 4320 3 4,5 630 12,2 0,033 0,099 0,9 10,98 11,079
4 2160 3 2,8 560 4,7 0,018 0,054 2,4 11,28 11,334
5 6480 2 6,7 630 26,9 0,077 0,154 0,9 24,21 24,264
6 2160 3 2,8 560 4,7 0,018 0,054 2,4 11,28 11,334
7 8640 3 8,9 630 47,5 0,077 0,531 0,6 28,50 29,031

Где М=V2 *Y/2, W=M*Ei

Pmax=P1+P3+P5+P7=74,334 Па.

Таким образом, потери давления в вентиляционной сети составляют Р=74,334 Па

Расчет мощности калорифера воздуховодов

После того как вы определили сопротивление сети, следует рассчитать требуемую мощность калорифера.

Для этого необходимо учитывать желаемую температуру воздуха на выходе и минимальную температуру наружного воздуха.

Температура воздуха, поступающего в помещение, должна быть выше 18°С. Минимальная температура наружного воздуха зависит от конкретных климатических условий. Например в Московской области она составляет примерно –26°С в зимний период. Таким образом, включенный на полную мощность калорифер должен иметь потенциал для нагрева воздуха на 44°С. Для квартирного помещения расчетная мощность калорифера, как правило, варьируется от 1 до 5 кВт, а для офисов этот показатель составляет 5–50 кВт.

Для более точного расчета используйте следующую формулу:

P = ΔT * L * Cv / 1000, где

Р  —  мощность калорифера, кВт;

ΔT — разность температур воздуха на выходе и входе калорифера,°С.

Для Москвы ΔT=44°С, для других регионов — определяется по СНиП;

L  —  производительность вентиляции, м³/ч.

Cv — объемная теплоемкость воздуха, равная 0,336 Вт·ч/м³/°С. Этот параметр зависит от давления, влажности и температуры воздуха, но в расчетах мы этим пренебрегаем.

Для получения более подробной информации, расчета площади, стоимости и заказа воздуховодов обращайтесь в нашу компанию.

vs-vent.ru

Расчет площади воздуховодов и вентиляционных систем а так же фасонных изделий

Детальная информация о расчете площади воздуховодов

Эффективность функционирования вентиляционных систем зависит от правильного подбора отдельных элементов и оборудования. Расчет площади воздуховода производится с целью обеспечения требуемой кратности смены воздуха в каждом помещении в зависимости от его назначения. Принудительная и естественная вентиляция требует отдельных алгоритмов проектных работ, но имеет общие направления. Во время определения сопротивления воздушному потоку учитывается геометрия и материал изготовления воздуховодов, их общая длина, кинематическая схема, наличие ответвлений. Дополнительно выполняется расчет потерь тепловой энергии для обеспечения благоприятного микроклимата и снижения затрат на содержание здания в зимний период времени.

Расчет площади сечения выполняется на основе данных по аэродинамическому расчету воздуховодов. С учетом полученных значений производится:

  1. Подбор оптимальных размеров поперечных сечений воздуховодов с учетом нормативных допустимых скоростей движения воздушного потока.
  2. Определение максимальных потерь давления в системе вентиляции в зависимости от геометрии, скорости движения и особенностей схемы воздуховода.

Последовательность расчета вентиляционных систем

1.Определение расчетных показателей отдельных участков общей системы. Участки ограничиваются тройниками или технологическими заслонками, расход воздуха по длине всего участка стабильный. Если от участка есть ответвления, то их расход по воздуху суммируется, а для участка определяется общий. Полученные значения отображаются на аксонометрической схеме.

2.Выбор магистрального направления системы вентиляции или отопления. Магистральный участок имеет самый большой расход воздуха среди всех выделенных во время расчетов. Он должен быть наиболее протяженным из всех последовательно расположенных отдельных участков и отводов. Согласно нормативным документам нумерация участков начинается с наименее нагруженного и продолжается по возрастанию воздушного потока.

Примерная схема системы вентиляции с обозначениями ответвлений и участков

3.Параметры сечений расчетных участков системы вентиляции подбираются с учетом рекомендованных стандартами скоростей в воздуховодах и жалюзийных решетках. Согласно государственным стандартам скорость воздуха в магистральных трубопроводах ≤ 8 м/с, в ответвлениях ≤ 5 м/с, в решетках жалюзи ≤ 3 м/с.

С учетом имеющихся предварительных условий выполняются расчеты по вентиляционной системе.

Общие потери давления в воздуховодах:

Расчет прямоугольных воздуховодов по потере давления:

R – удельные потери на трение о поверхность воздуховода;

L – длина воздуховода;

n – поправочный коэффициент в зависимости от показателей шероховатости воздуховодов.

Удельные потери давления для круглых сечений определяются по формуле:

λ – коэффициент величины гидравлического сопротивления трения;

d – диаметр сечения воздуховода;

Рд – фактическое давление.

Для расчета коэффициента сопротивления трения для круглого сечения трубы применяется формула:

Во время расчетов допускается использование таблиц, в которых на основании вышеизложенных формул определены практические потери на трение, показатели динамического давления и расход воздуха для различных скоростей потока для воздуховодов круглой формы.

Нужно иметь в виду, что показатели фактического расхода воздуха в прямоугольном и круглом воздуховодах с одинаковой площадью сечений неодинаковы даже при полном равенстве скоростей движения воздушного потока. Если температура воздуха превышает +20°С, то нужно пользоваться поправочными коэффициентами на трение и местное сопротивление.

Расчет системы вентиляции состоит из расчета основной магистрали и всех ответвлений, подключенных к ней. При этом нужно добиваться положения, чтобы скорость движения воздуха постоянно возрастала по мере приближения к всасывающему или нагнетающему вентилятору. Если схема воздуховода не позволяет учесть потери ответвлений, а их значения не превышают 10% общего потока, то разрешается использовать диаграмму для гашения избыточного давления. Коэффициент сопротивления воздушным потокам диафрагмы рассчитывается по формуле:

Приведенные выше расчеты воздуховодов пригодны для использования следующих типов вентиляции:

  1. Вытяжной. Используется для удаления из производственных, торговых, спортивных и жилых помещений отработанного воздуха. Дополнительно может иметь специальные фильтры для очистки выбрасываемого наружу воздуха от пыли или вредных химических соединений, могут монтироваться внутри или снаружи помещений.
  2. Приточной. В помещения подается подготовленный (нагретый или очищенный) воздух, может иметь специальные приспособления для понижения уровня шума, автоматизации управления и т. д.
  3. Приточно/вытяжной. Комплекс оборудования и устройств для подачи/удаления воздуха из помещений различного назначения, может иметь установки рекуперации тепла, что значительно сокращает затраты на поддержание в помещениях благоприятного микроклимата.

Движение воздушных потоков по воздуховодам может быть горизонтальным, вертикальным или угловым. С учетом архитектурных особенностей помещений, их количества и размеров воздуховоды могут монтироваться в несколько ярусов в одном помещении.

Расчет площади сечения трубопровода

После того как определена скорость движения воздуха по воздуховодам с учетом требуемой кратности обмена, можно рассчитывать параметры сечения воздуховодов по формуле S=R\3600v, где S – площадь сечения воздуховода, R – расход воздуха в м3/час, v – скорость движения воздушного потока, 3600 – временной поправочный коэффициент. Площадь сечения позволяет определить диаметр круглого воздуховода по формуле:

Если в помещении смонтирован воздуховод квадратного сечения, то его рассчитывают по формуле de = 1.30 x ((a x b)0.625 / (a + b)0.25).

de – эквивалентный диаметр для круглого воздуховода в миллиметрах;

a и b длина сторон квадрата или прямоугольника в миллиметрах. Для упрощения расчетов пользуйтесь переводной таблицей № 1.

Таблица № 1

Для вычисления эквивалентного диаметра овальных воздуховодов используется формула d = 1.55 S0.625/P0.2

S – площадь сечения воздуховода овального воздуховода;

P ­– периметр трубы.

Площадь сечения овальной трубы вычисляется по формуле S = π×a×b/4

S – площадь сечения овального воздуховода;

π = 3,14;

a = большой диаметр овального воздуховода;

b = меньший диаметр овального воздуховода.Подбор овального или квадратного воздуховодов по скорости движения воздушного потокаДля облегчения подбора оптимального параметра проектировщики рассчитали готовые таблицы. С их помощью можно выбрать оптимальные размеры воздуховодов любого сечения в зависимости от кратности обмена воздуха в помещениях. Кратность обмена подбирается с учетом объема помещения и требований СанПин.

Расчет параметров воздуховодов и систем естественной вентиляцииВ отличие от принудительной подачи/удаления воздуха для естественной вентиляции важны показания разницы давления снаружи и внутри помещений. Расчет сопротивления и выбор направления надо делать таким способом, чтобы гарантировать минимальную потерю давления потока.

При расчетах выполняется увязка существующих гравитационных давлений с фактическими потерями давления в вертикальных и горизонтальных воздуховодах.

Классификаций исходных данных во время проведения расчетов сечения воздуховодовВо время расчетов нужно принимать во внимание требования действующего СНиПа 2.04.05-91 и СНиПа 41-01-2003. Расчет систем вентиляции по диаметру воздуховодов и используемому оборудованию должен обеспечивать:

  1. Нормируемые показатели по чистоте воздуха, кратности обмена и показателям микроклимата в помещениях. Выполняется расчет мощности монтируемого оборудования. При этом уровень шума и вибрации не может превышать установленных пределов для зданий и помещений с учетом их назначения.
  2. Системы должны быть ремонтнопригодными, во время проведения плановых регламентных работ технологический цикл функционирования предприятий не должен нарушаться.
  3. В помещениях с агрессивной средой предусматриваются только специальные воздуховоды и оборудование, исключающее искрообразование. Горячие поверхности должны дополнительно изолироваться.
Нормативы расчетных условий для определения сечения воздуховодов

Расчет площади воздуховодов должен обеспечивать:

  1. Надлежащие условия по чистоте и температурному режиму в помещениях. Для помещений с избытком теплоты обеспечивать его удаление, а в помещениях с недостатком теплоты минимизировать потери теплого воздуха. При этом следует придерживаться экономической целесообразности выполнения названных условий.
  2. Скорость движения воздуха в помещениях не должна ухудшать комфортность пребывания в помещениях людей. При этом принимается во внимание обязательная очистка воздуха в рабочих зонах. В струе входящего в помещение воздуха скорость движения Nх определяется по формуле Nх = Кn × n. Максимальная температура входящего воздуха определяется по формуле tx = tn + D t1, а минимальная по формуле tcx = tn + D t2. Где: nn, tn – нормируемая скорость воздушного потока в м/с и температура воздуха на рабочем месте в градусах Цельсия, К =6 (коэффициент перехода скорости воздуха на выходе из воздуховода и в помещении), D t1, D t2 – максимально допустимое отклонение температуры.
  3. Предельную концентрацию вредных для здоровья химических соединений и взвешенных частиц согласно ГОСТ 12.1.005-88. Дополнительно нужно учитывать последние постановления Госнадзора.
  4. Параметры наружного воздуха. Регулируются в зависимости от технологических особенностей производственного процесса, конкретного назначения сооружения и зданий. Показатели концентрации взрывоопасных соединений и веществ должны отвечать требованиями противопожарных государственных органов.

Монтаж вентиляционных систем с принудительной подачей/удалением воздуха нужно делать только в тех случаях, когда характеристики естественной вентиляции не могут обеспечивать требуемых параметров по чистоте и температурному режиму в помещениях или здания имеют отдельные зоны с полным отсутствием естественного притока воздуха. Для некоторых помещений площадь воздуховодов подбирается с таким условием, чтобы в помещениях постоянно поддерживался подпор и исключалась подача наружного воздуха. Это касается приямков, подвалов и иных помещений, в которых есть вероятность скапливания вредных веществ. Дополнительно воздушное охлаждение должно присутствовать на рабочих местах, которые имеют тепловое облучение более 140 Вт/м2.Требования к системам вентиляцииЕсли расчетные данные по системам вентиляции понижают температуру в помещениях до +12°С, то в обязательном порядке нужно предусматривать одновременное отопление. К системам присоединяются отопительные агрегаты соответствующей мощности с целью доведения температурных значений до нормированных государственными стандартами. Если вентиляция монтируется в производственных зданиях или общественных помещениях, в которых постоянно пребывают люди, то нужно предусматривать не менее двух приточных и двух вытяжных постоянно действующих агрегатов. Размер площади воздуховодов должен обеспечивать расчетную величину воздушных потоков. Для соединенных или смежных помещений допускается иметь две системы вытяжки и одну систему притока или наоборот.

Если помещения должны вентилироваться в круглосуточном режиме, то к смонтированным воздуховодам обязательно нужно подключать резервное (аварийное) оборудование. Дополнительные ответвления должны учитываться, по ним делается отдельный расчет площади. Резервный вентилятор можно не устанавливать лишь в случаях если:

  1. После выхода из строя системы вентиляции есть возможность быстро остановить рабочий процесс или вывести людей из помещения.
  2. Технические параметры аварийной вентиляции полностью обеспечивают требования по чистоте и температуре воздуха в помещениях.

Общие требования к воздуховодамРасчет окончательных параметров воздуховодов должен предусматривать возможность:

  1. Монтажа противопожарных клапанов вертикальном или горизонтальном положении.
  2. Установки на межэтажных площадках воздушных затворов. Конструктивные особенности устройств должны гарантировать выполнение нормативных требований по аварийному перекрытию отдельных ответвлений вентиляционной системы и предотвращению распространения дыма или огня по всему зданию. При этом длина участка, на котором присоединяются затворы, не должна быть менее двух метров.
  3. К каждому поэтажному коллектору может присоединяться не более пяти воздуховодов. Узел соединения создает дополнительное сопротивление воздушному потоку, эту особенность нужно учитывать во время расчета размеров.
  4. Установку систем автоматической противопожарной сигнализации. Если привод сигнализации монтируется внутри воздуховода, то при определении его оптимального диаметра следует принимать во внимание уменьшение эффективного диаметра и появление дополнительного сопротивления воздушному потоку из-за завихрений. Такие же требования выдвигаются при установке обратных клапанов, предупреждающих протекание вредных химических соединений из одного производственного помещения в другое.

Воздуховоды из негорючих материалов должны устанавливаться для систем вентиляции с отсосом пожароопасных продуктов или с температурой более +80°С. Главные транзитные участки вентиляции должны быть металлическими. Кроме того, металлические воздуховоды монтируются на чердачных помещениях, в технических комнатах, в подвалах и подпольях.

Общие потери воздуха для фасонных изделий определяются по формуле:

Где р – удельные потери давления на квадратный метр развернутого сечения воздуховода, ∑Ai – обща развернутая площадь. В пределах одной схемы монтажа системы вентиляции потери можно принимать по таблице.

Во время расчетов размеров воздуховодов в любом случае понадобится инженерная помощь, сотрудники нашей компании имеют достаточно знаний для решения всех технических вопросов.

plast-product.ru

Расчет площади воздуховодов различной формы и фасонных изделий

Содержание статьи

Производительность системы вентиляции напрямую зависит от правильности ее проектирования. Важнейшую роль в этом играет верный расчет площади воздуховодов. От него зависит:

  • Беспрепятственное движение воздушного потока в нужных объемах, его скорость;
  • Герметичность системы;
  • Уровень шума;
  • Расход электроэнергии.

Воздуховод

Для того чтобы узнать все нужные значения, можно обратиться в соответствующую компанию или же воспользоваться специальными программами (их можно легко отыскать в интернете). Однако, при необходимости, найти все необходимые параметры возможно и самостоятельно. Для этого существуют формулы.

Использование их довольно просто. Вам также достаточно вписать параметры вместо соответствующих букв и найти результат. Формулы помогут вам отыскать точные значения, с учетом всех индивидуальных факторов. Обычно они применяются при инженерных работах по проектированию системы вентиляции.

Вернуться к содержанию ↑

Как найти верные значения

Для того чтобы произвести расчет площади сечения нам потребуется информация:

  • О минимально необходимом воздушном потоке;
  • О предельно возможной скорости воздушного потока.

Для чего нужен правильный расчет площади:

  • Если скорость потока будет выше положенного предела, то это станет причиной падения давления. Эти факторы, в свою очередь, повысят расход электроэнергии;
  • Аэродинамический шум и вибрации, если все выполнено верно, будут в пределах нормы;
  • Обеспечение нужного уровня герметичности.

Воздуховод в разборе

Это также позволит повысить эффективность системы, поможет сделать ее долговечной и практичной. Нахождение оптимальных параметров сети – принципиально важный момент в проектировании. Только в этом случае система вентиляции прослужит долго, отлично справляясь со всеми своими функциями. Особенно это актуально для больших помещений общественного и производственного значения.

Чем большим будет сечение, тем ниже будет скорость воздушного потока. Это также уменьшит аэродинамический шум и расход электроэнергии. Но есть и минусы: стоимость таких воздуховодов будет выше, и конструкции не всегда можно установить в пространство над навесным потолком. Однако это возможно с прямоугольными изделиями, высота которых меньше. В то же время изделия круглой формы проще устанавливаются и обладают важными эксплуатационными преимуществами.

Что именно выбрать, зависит от ваших требований, приоритета экономии электроэнергии, самих особенностей помещения. Если вы желаете сэкономить электроэнергию, сделать шум минимальным и у вас есть возможность установить крупную сеть, выбирайте систему прямоугольной формы. Если же приоритетом является простота установки или в помещении сложно установить конструкции прямоугольного типа, вы можете выбрать изделия круглого сечения.

Расчет площади выполняется по следующей формуле:

Sc = L * 2, 778/V

Sc здесь – площадь сечения;L – расход воздушного потока в метрах в кубе/час;V – скорость воздушного потока в воздуховоде в метрах в секунду;2,778 – необходимый коэффициент.

Трубы для воздуховода

После того, как расчет площади выполнен, вы получите результат в квадратных сантиметрах.

Фактическую площадь воздуховодов помогут определить следующие формулы:

Для круглых: S = Пи * D в квадрате /400Для прямоугольных: S = A * B /100S здесь – фактическая площадь сечения;D – диаметр конструкции;A и B – высота и ширина конструкций.

Вернуться к содержанию ↑

Как определить потери давления

Расчет сопротивления сети позволяет принять во внимание потери давления. Поток воздуха, во время движения, испытывает определенное сопротивление. Для его преодоления важно соответствующее давление. Давление это измеряется в Па.

Для того чтобы узнать нужный параметр, потребуется следующая формула:

P = R * L + Ei * V2 * Y/2

R здесь – удельные сокращения давления на трение в сети;L – протяженность воздуховодов;Ei – коэффициент местных потерь в сети в сумме;V – скорость воздуха на рассматриваемом участке сети;Y – плотность воздуха.R можно узнать в соответствующем справочнике. Ei зависит от местного сопротивления.

Вернуться к содержанию ↑

Как узнать оптимальную мощность нагревателя воздуха

Для того чтобы узнать оптимальную мощность нагревателя воздуха, требуются показатели нужной температуры воздуха и самой минимальной температуры снаружи помещения.

Составные элементы воздуховода

Минимальная температура в системе вентиляции – 18 градусов. Температура снаружи помещения зависит от климатических условий. Для квартир оптимальная мощность нагревателя обычно составляет от 1 до 5 кВт, для офисных помещений – 5-50 кВт.

Точный расчет мощности нагревателя в сети позволит выполнить следующая формула:

P = T * L * Cv /1000

P здесь – мощность нагревателя в кВт;T – разность температуры воздуха внутри и снаружи помещения. Это значение можно найти в СНиП;L – производительность системы вентиляции;Cv – теплоемкость, равная 0,336 Вт*ч/метры квадратные/градус по Цельсию.

Вернуться к содержанию ↑

Дополнительная информация

Для того чтобы узнать нужные параметры фасонных изделий и самой конструкции, не обязательно самостоятельно выполнять расчет частей сети вентиляции. Для нахождения всех значений существуют специальные программы. Вам достаточно ввести требуемые числа, и вы получите результат за доли секунды.

Рассчитываются значения креплений, фасонных частей, воздуховодов обычно инженерами, занимающимися проектированием систем вентиляции. Но и они применяют таблицы, в которых имеются все требуемые коэффициенты, формулы, значения.

Также существует специальная таблица эквивалентных диаметров воздуховодов. Это таблица диаметров воздуходувов круглой формы, в которых снижение давления на трение равна снижению давления в конструкциях прямоугольной формы. Эквивалентный диаметр конструкции воздуходува требуется тогда, когда необходимо произвести расчет прямоугольных воздуходувов, и при этом применяется таблица для изделий круглой формы.

Стальные трубы для воздуховода

Известно три способа узнать эквивалентное значение:

  • Ориентируясь на скорость;
  • По поперечному сечению;
  • По расходу.

Все эти значения связаны с шириной и другими значениями воздуховодов. Для каждого из параметров применяется своя методика пользования таблицами. Итоговый результат – значение потери давления на трение. Вне зависимости от того, какую методику вы применили, результат получается одинаковым.

В интернете вы легко сможете найти таблицы, программы, справочники, необходимые для подсчета площади и иных параметров самих конструкций, креплений. Самое простое – воспользоваться специальными программами. В этом случае от вас требуется только ввод нужных значений. При этом результаты вы получите довольно точные.

Вернуться к содержанию ↑

Пример создания воздуховодов

АвторПоделитесьОцените

Виктор Самолин

Интересное по теме:

vseotrubax.com

Расчет площади изделий вентиляционных систем от ВСК в Ростове-на-Дону с доставкой от компании ВСК

круглый воздуховод

квадратный воздуховод

отвод круглого сечения

отвод квадратного сечения

переход круглого сечения

переход с прямоугольного на круглое сечения

переход с прямоугольного на прямоугольное сечения

тройник круглого сечения

тройник круглого сечения с прямоугольным отводом

тройник прямоугольного сечения с круглым отводом

тройник прямоугольного сечения с прямоугольным отводом

заглушка круглая

заглушка квадратная>

утка со смещением в 1-ой плоскости

утка со смещением в 2-х плоскостях

зонт островного типа

зонт пристенного типа

Круглый зонт

Квадратный зонт

Прямоугольный зонт

Дефлектор

vsk-gk.ru

Расчет площади воздуховодов - онлайн калькулятор

Вентиляция играет важнейшую роль в создании оптимального микроклимата в жилище. Правильно сконструированная вентиляционная система обеспечивает вывод за пределы помещения загрязненного воздуха, вредных газов, паров и пыли, которые влияют на здоровье людей, находящихся в жилом помещении. При проектировании вентиляционных систем производится огромное количество расчетов, в которых учитывается множество факторов и переменных.

В производительности вентиляционной системы не последнюю роль играю воздуховоды, а именно их длина, сечение и форма. Крайне важно чтобы расчет сечения воздуховодов был произведен правильно, так как именно от этого будет зависеть, сможет ли система воздуховодов пропускать достаточное количество воздуха, скорость воздушного потока и бесперебойная работа вентиляционной системы в целом. Благодаря грамотному расчету площади воздушных каналов, вибрация и аэродинамические шумы, производимые воздушными потоками, будут находиться в пределах допустимой нормы.

Рассчитать площадь воздуховодов для естественной вентиляционной системы можно тремя способами:

  • Обратиться к профессионалам. Расчет будет произведен качественно, но дорого.
  • Сделать самостоятельный расчет, используя формулы расчета удельных потерь воздуха, гравитационного подпора, поперечного сечения воздуховодов, формулу скорости движения воздушных масс в газоходах, определение потерь на трение и сопротивление.
  • Воспользоваться онлайн-калькулятором.

Расчет сечения воздуховода

Для того чтобы воспользоваться онлайн-калькулятором, не нужно иметь инженерного образования или платить денег, просто введите в каждое поле калькулятора необходимые данные и получите правильный результат.

Методика самостоятельного расчета сечения воздуховодов

  1. Определение аэродинамических характеристик воздушного канала с естественным движением воздуха.

Rуд = Pгр/ ∑L

где

Pгр – гравитационное давление в каналах вытяжной вентиляции, Па;

L – расчетная длина участка, м.

При естественном побуждении необходимо увязать показатели гравитационных давлений в проходных каналах помещений с показателями трения и местными сопротивлениями, которые возникают по пути движения воздуха от вытяжки до устья вытяжной шахты, а именно по равенству 1, где ∑(Rln+Z) – расчетное снижение давления на местные сопротивления и трение на отрезках воздуховодов в расчетном направлении движения воздушных масс.

  1. Определение значения гравитационного подпора

Pгр= h(pn—pb)9.81

где

h – высота столба воздуха, м;

pn – плотность воздушных масс снаружи помещения, кг/м3,

pb – плотность воздушных масс в помещении.

  1. Площадь сечения воздуховода определяется по формуле

S = L * 2.778/V

где

S – расчетная площадь сечения воздуховода см2

L – расход воздуха через воздуховод, м3/час

V – скорость движения воздуха в воздуховоде, м/с,

2,788 – коэффициент для согласования размерностей.

  1. Фактическая площадь сечения воздуховодов определяется по формулам:

S = π * D / 400 – для круглых воздуховодов

S = A * B / 100 – для прямоугольных воздуховодов

где

S – фактическая площадь сечения, см2

D – диаметр круглого воздуховода, мм

A и B – ширина и высота прямоугольного воздуховода, мм.

  1. Для расчета сопротивления сети воздуховодов используется формула:

P = R * L + Ei * V2 * Y/2 где:

R – удельные потери на трение на конкретном участке вентиляционной сети

L – длина участка воздуховода.

Ei – сумма коэффициентов местных потерь на участке воздуховода

V2 – скорость движения воздуха на участке воздуховода

Y – плотность воздуха.

ventilationpro.ru

Расчет площади воздуховодов | Расчет воздуховодов и фасонных изделий для вентиляционных систем

Группа компаний «Провенто» предлагает новый эффективный способ повышения герметичности систем вентиляции.

Воздухонепроницаемость – один из главных показателей качества любой вентиляционной системы. Утечки в воздуховодах приходится компенсировать наращиванием потока воздуха, увеличивая для этого мощность, как вентиляторов, так и размеры компонентов вентиляционной системы (фильтров, теплообменников и т.д.). Очевидно, что все это ведет к росту затрат.

Если же утечки не будут компенсированы увеличением потока воздуха, то заданные параметры микроклимата помещения не будут выдержаны. Таким образом, комфортные условия необходимые для деятельности человека будут нарушены, что в свою очередь отрицательно скажется на его самочувствии и работоспособности.

Помимо этого еще существует ряд чисто технических проблем негерметичных воздуховодов, таких как повышенный шум утечки воздуха, более интенсивное засорение фильтров и.т.п.

Как же измерить воздухонепроницаемость? Для ее оценки существует коэффициент утечки, который показывает относительные потери воздушного потока в вентиляционной системе. Европейский стандарт Eurovent 2.2 подразделяет воздухонепроницаемость на три класса: A, B и C. Класс С имеет самый низкий коэффициент утечки, и, соответственно, наивысшую воздухонепроницаемость – в три раза выше, чем класс B, и в девять раз выше, чем класс А. Для справки: российский класс П (плотный) фактически соответствует европейскому классу B.

В настоящее время вентиляционные системы чаще всего собираются из воздуховодов прямоугольного и/или круглого сечения. Как показывают исследования, проведенные российским производителем компонентов систем вентиляции – Группой компаний «Провенто», воздуховоды круглого сечения обладают более высокой воздухонепроницаемостью, чем воздуховоды прямоугольного сечения. Это объясняется тем, что сборка системы воздуховодов круглого сечения в техническом плане гораздо проще и экономичнее. Так, соединение двух узлов круглых воздуховодов предполагает использование только одного фитинга, тогда как воздуховоды прямоугольного сечения требуют систему двух фланцев с уплотнением. Кроме того, вентиляционная система из воздуховодов круглого сечения имеет меньшую площадь поверхности и меньший периметр, подлежащий уплотнению, чем равноценная ей система из воздуховодов прямоугольного сечения. Как следствие, вентиляционные системы, выполненные из круглых (спирально-навивных) воздуховодов стоят дешевле и имеют более низкие эксплуатационные расходы, чем их прямоугольные аналоги. Все эти выводы подтверждаются данными экспериментов, подробно ознакомиться с которыми можно в брошюре «Экономические и технические аспекты при выборе систем воздуховодов», выпушенной ГК «Провенто».

Постоянно работая над повышением качества своей продукции, ГК «Провенто» поставила перед собой задачу наладить выпуск воздуховодов с самой высокой воздухонепроницаемостью. Усилиями специалистов предприятия эта задача была успешно решена: как показали измерения, коэффициент утечки для предварительно уплотненных систем воздуховодов круглого сечения «Провенто» с запасом удовлетворил требованиям самого высокого класса по европейскому стандарту – класса С.

Ключевую роль в снижении утечек воздуховодов «Провенто» играет применение резинового уплотнения, которое предварительно запрессовано при производстве фасонных изделий. Уплотнения выполнены из износостойкого каучука на основе сополимера этилена, пропилена и диенового мономера.

Уплотняющая прокладка спроектирована в виде замкнутого профиля специальной формы из гомогенного каучука. Она находится в канавке в концевой части фитинга и надежно закреплена. Однако, ГК «Провенто» пошла еще дальше и стала использовать герметизирующую прокладку с двойным уплотнением, которая позволила повысить воздухонепроницаемость вдвое!

Однако система предварительного уплотнения не только многократно повышает воздухонепроницаемость, но и сокращает время монтажа воздуховодов и делает более экономичным ввод их в эксплуатацию. Предварительная запрессовка уплотнителя на заводе избавляет от необходимости применять силиконовые герметики (что особенно проблематично на холоде). Вам остается только вставить один элемент воздуховода в другой.

В последнее время постоянный рост цен на энергоносители и ужесточение международных норм по экологии и энергосбережению заставляет использовать более герметичные вентиляционные системы. Применение спирально-навивных воздуховодов ГК «Провенто» с предварительно запрессованным уплотнением позволяет решить данные задачи, уменьшить инвестиционную составляющую строительных проектов, снизить стоимость монтажа вентиляции и ее последующего обслуживания.

По всем вопросам, касающимся конкретных проектов можно обратиться в ГК «Провенто». Вы можете задать вопрос с помощью формы ниже.

www.provento-ventilation.ru